Syngeneic graft-vs.-host disease (SGVHD) develops in rodents following the treatment of lethally irradiated, bone marrow (BM) reconstituted animals with a short course of the immunosuppressive agent cyclosporine A (CsA). Using an in vivo depletion approach, we recently demonstrated that CD4(+), but not CD8(+), T cells participated in inducing SGVHD. Studies were therefore undertaken to adoptively transfer SGVHD into lethally irradiated, syngeneic BM reconstituted secondary recipients. Whole T cell populations as well as purified CD4(+)T cells isolated from SGVHD, but not normal or transplant control, animals mediated the transfer of SGVHD into secondary recipients. These cells have an apparent specificity for enteric bacterial antigens. The pathologic process that developed was identical to that observed in the animals with de novo SGVHD after syngeneic BMT and CsA therapy. It was shown that a radiation-sensitive mechanism prevented the transfer of SGVHD into normal, nonirradiated secondary recipients. The ability to reproducibly transfer SGVHD into secondary recipients will enhance our ability to study regulatory mechanisms that are altered during CsA therapy and permit the development of murine CsA-induced SGVHD.
These results demonstrate that after lethal irradiation and in the absence of donor T cells, T cells of recipient origin can expand and mediate the induction of CsA-induced SGVHD.
Syngeneic graft vs. host disease (SGVHD) was first described as a graft vs. host disease-like syndrome that developed in rats following syngeneic bone marrow transplantation (BMT) and cyclosporin A (CsA) treatment. SGVHD can be induced by reconstitution of lethally irradiated mice with syngeneic bone marrow cells followed by 21 days of treatment with the immunosuppressive agent CsA. Clinical symptoms of the disease appear 2–3 wk following cessation of CsA therapy, and disease-associated inflammation occurs primarily in the colon and liver. CD4+T cells have been shown to play an important role in the inflammatory response observed in the gut of SGVHD mice. Time-course studies revealed a significant increase in migration of CD4+T cells into the colon during CsA therapy, as well as significantly elevated mRNA levels of TNF-α, proinflammatory chemokines, and cell adhesion molecules in colonic tissue of CsA-treated animals compared with BMT controls, as early as day 14 post-BMT. Homing studies revealed a greater migration of labeled CD4+T cells into the gut of CsA-treated mice at day 21 post-BMT than control animals via CsA-induced upregulation of mucosal addressin cell adhesion molecule. This study demonstrates that, during the 21 days of immunosuppressive therapy, functional mechanisms are in place that result in increased homing of CD4+T effector cells to colons of CsA-treated mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.