Insect species associated with human goods continue to be accidentally introduced into new locations. A small proportion of these introduced species become invasive, causing a range of impacts in the receiving community.
Food availability is a primary driver of avian population regulation. However, few studies have considered the effects of what is essentially a massive supplementary feeding experiment: the practice of wild bird feeding. Bird feeding has been posited as an important factor influencing the structure of bird communities, especially in urban areas, although experimental evidence to support this is almost entirely lacking. We carried out an 18-mo experimental feeding study at 23 residential properties to investigate the effects of bird feeding on local urban avian assemblages. Our feeding regime was based on predominant urban feeding practices in our region. We used monthly bird surveys to compare avian community composition, species richness, and the densities of local species at feeding and nonfeeding properties. Avian community structure diverged at feeding properties and five of the commonest garden bird species were affected by the experimental feeding regime. Introduced birds particularly benefitted, with dramatic increases observed in the abundances of house sparrow (Passer domesticus) and spotted dove (Streptopelia chinensis) in particular. We also found evidence of a negative effect on the abundance of a native insectivore, the grey warbler (Gerygone igata). Almost all of the observed changes did not persist once feeding had ceased. Our study directly demonstrates that the human pastime of bird feeding substantially contributes to the structure of avian community in urban areas, potentially altering the balance between native and introduced species.avian ecology | community composition | garden birds | human interactions | wildlife feeding
Three species of Vespula have become invasive in Australia, Hawai‘i, New Zealand, and North and South America and continue to spread. These social wasp species can achieve high nest densities, and their behavioral plasticity has led to substantial impacts on recipient communities. Ecologically, they affect all trophic levels, restructuring communities and altering resource flows. Economically, their main negative effect is associated with pollination and the apicultural industry. Climate change is likely to exacerbate their impacts in many regions. Introduced Vespula spp. likely experience some degree of enemy release from predators or parasites, although they are exposed to a wide range of microbial pathogens in both their native and introduced range. Toxic baits have been significantly improved over the last decade, enabling effective landscape-level control. Although investigated extensively, no effective biological control agents have yet been found. Emerging technologies such as gene drives are under consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.