Behavioral function lost in mammals (including humans) after peripheral nerve severance is slowly (weeks to years) and often poorly restored by 1-2-mm/day, nonspecifically directed outgrowths from proximal axonal stumps. To survive, proximal stumps must quickly repair (seal) plasmalemmal damage. We report that, after complete cut- or crush-severance of rat sciatic nerves, morphological continuity, action potential conduction, and behavioral functions can be consistently (>98% of trials), rapidly (minutes to days), dramatically (70-85% recovery), and chronically restored and some Wallerian degeneration prevented. We assess axoplasmic and axolemmal continuity by intra-axonal dye diffusion and action potential conduction across the lesion site and amount of behavioral recovery by Sciatic Functional Index and Foot Fault tests. We apply well-specified sequences of solutions containing FDA-approved chemicals. First, severed axonal ends are opened and resealing is prevented by hypotonic Ca²⁺-free saline containing antioxidants (especially methylene blue) that inhibit plasmalemmal sealing in sciatic nerves in vivo, ex vivo, and in rat B104 hippocampal cells in vitro. Second, a hypotonic solution of polyethylene glycol (PEG) is applied to open closely apposed (by microsutures, if cut) axonal ends to induce their membranes to flow rapidly into each other (PEG-fusion), consistent with data showing that PEG rapidly seals (PEG-seals) transected neurites of B104 cells, independently of any known endogenous sealing mechanism. Third, Ca²⁺-containing isotonic saline is applied to induce sealing of any remaining plasmalemmal holes by Ca²⁺-induced accumulation and fusion of vesicles. These and other data suggest that PEG-sealing is neuroprotective, and our PEG-fusion protocols that repair cut- and crush-severed rat nerves might rapidly translate to clinical procedures.
The sensorimotor speech/voice deficits associated with Parkinson disease have been well documented in humans. They are largely resistant to pharmacological and surgical treatment, but respond to intensive speech therapy. The mechanisms underlying this phenomenon are not well understood and are difficult to systematically test in humans. Thus, we turn to the rat as a model. The purpose of this study is to compare the ultrasonic vocalization (USV) of rats in three conditions: control, haloperidol-induced transient dopamine depletion, and unilateral 6-hydroxydopamine (6-OHDA) induced moderately-severe degeneration of dopamine neurons. It was hypothesized that both dopamine-altered conditions would lead to a change in the features of the USV acoustic signal. Results demonstrated that bandwidth decreased in the dopamine-altered rats. This is the first study to document a degradation of the acoustic signal of frequency-modulated 50-kHz calls as a result of interfering with dopamine synaptic transmission in rats. The data suggest that mild transient dopamine depletion with haloperidol or even unilateral degeneration of dopamine neurons is associated with changes in the USV acoustic signal. Dopaminergic dysfunction influences USV quality without reducing the number of calls. This study provides a foundation to examine the role of dopamine in sensorimotor processes underlying USV production and potentially to explore treatments for dopamine deficiency-related impaired vocal outcome.
Vocal deficits are prevalent and debilitating in Parkinson's disease. These deficits may be related to the initial pathology of the nigrostriatal dopamine neurons and resulting dopamine depletion, which contributes to dysfunction of fine motor control in multiple functions. Although vocalization in animals and humans may differ in many respects, we evaluated complex (50-kHz) ultrasonic mate calls in two rat models of Parkinson's disease, including unilateral infusions of 6-hydroxydopamine to the medial forebrain bundle and peripheral administration of a non-akinesia dose of the dopamine antagonist haloperidol. We examined the effects of these treatments on multiple aspects of the acoustic signal. The number of trill-like (frequency modulated) 50-kHz calls was significantly reduced, and appeared to be replaced by simpler (flat) calls. The bandwidth and maximum intensity of simple and frequency-modulated calls were significantly decreased, but call duration was not. Our findings suggest that the nigrostriatal dopamine pathway is involved to some extent in fine sensorimotor function that includes USV production and complexity.
Loss of function in the hands occurs with many brain disorders, but there are few measures of skillful forepaw use in rats available to model these impairments that are both sensitive and simple to administer. Whishaw and Coles (1996) previously described the dexterous manner in which rats manipulate food items with their paws, including thin pieces of pasta. We set out to develop a measure of this food handling behavior that would be quantitative, easy to administer, sensitive to the effects of damage to sensory and motor systems of the CNS and useful for identifying the side of lateralized impairments. When rats handle 7 cm lengths of vermicelli, they manipulate the pasta by repeatedly adjusting the forepaw hold on the pasta piece. As operationally defined, these adjustments can be easily identified and counted by an experimenter without specialized equipment. After unilateral sensorimotor cortex (SMC) lesions, transient middle cerebral artery occlusion (MCAO) and striatal dopamine depleting (6-hydroxydopamine, 6-OHDA) lesions in adult rats, there were enduring reductions in adjustments made with the contralateral forepaw. Additional pasta handling characteristics distinguished between the lesion types. MCAO and 6-OHDA lesions increased the frequency of several identified atypical handling patterns. Severe dopamine depletion increased eating time and adjustments made with the ipsilateral forepaw. However, contralateral forepaw adjustment number most sensitively detected enduring impairments across lesion types. Because of its ease of administration and sensitivity to lateralized impairments in skilled forepaw use, this measure may be useful in rat models of upper extremity impairment.
MY, Estler CJ, Boydston EA, Schallert T, Bittner GD. Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury. J Neurophysiol 104: 695-703, 2010. First published May 5, 2010 doi:10.1152/jn.01051.2009. The inability to rapidly (within minutes to hours) improve behavioral function after severance of peripheral nervous system axons is an ongoing clinical problem. We have previously reported that polyethylene glycol (PEG) can rapidly restore axonal integrity (PEG-fusion) between proximal and distal segments of cut-and crush-severed rat axons in vitro and in vivo. We now report that PEG-fusion not only reestablishes the integrity of crushsevered rat sciatic axons as measured by the restored conduction of compound action potentials (CAPs) and the intraaxonal diffusion of fluorescent dye across the lesion site, but also produces more rapid recovery of appropriate hindlimb motor behaviors. Improvement in recovery occurred during the first few postoperative weeks for the foot fault (FF) asymmetry test and between week 2 and week 3 for the Sciatic Functional Index (SFI) based on analysis of footprints. That is, the FF test was the more sensitive indicator of early behavioral recovery, showing significant postoperative improvement of motor behavior in PEG-treated animals at 24 -48 h. In contrast, the SFI more sensitively measured longer-term postoperative behavioral recovery and deficits at 4 -8 wk, perhaps reflecting the development of fine (distal) motor control. These and other data show that PEG-fusion not only rapidly restores physiological and morphological axonal continuity, but also more quickly improves behavioral recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.