BackgroundFindings of cerebral cortical atrophy, white matter lesions and microhemorrhages have been reported in high-altitude climbers. The aim of this study was to evaluate structural cerebral changes in a large cohort of climbers after an ascent to extreme altitudes and to correlate these findings with the severity of hypoxia and neurological signs during the climb.MethodsMagnetic resonance imaging (MRI) studies were performed in 38 mountaineers before and after participating in a high altitude (7126m) climbing expedition. The imaging studies were assessed for occurrence of new WM hyperintensities and microhemorrhages. Changes of partial volume estimates of cerebrospinal fluid, grey matter, and white matter were evaluated by voxel-based morphometry. Arterial oxygen saturation and acute mountain sickness scores were recorded daily during the climb.ResultsOn post-expedition imaging no new white matter hyperintensities were observed. Compared to baseline testing, we observed a significant cerebrospinal fluid fraction increase (0.34% [95% CI 0.10–0.58], p = 0.006) and a white matter fraction reduction (-0.18% [95% CI -0.32–-0.04], p = 0.012), whereas the grey matter fraction remained stable (0.16% [95% CI -0.46–0.13], p = 0.278). Post-expedition imaging revealed new microhemorrhages in 3 of 15 climbers reaching an altitude of over 7000m. Affected climbers had significantly lower oxygen saturation values but not higher acute mountain sickness scores than climbers without microhemorrhages.ConclusionsA single sojourn to extreme altitudes is not associated with development of focal white matter hyperintensities and grey matter atrophy but leads to a decrease in brain white matter fraction. Microhemorrhages indicative of substantial blood-brain barrier disruption occur in a significant number of climbers attaining extreme altitudes.
In vitro and animal studies revealed micro-RNAs (miRs) to be involved in modulation of hypoxia-induced pulmonary hypertension (HPH). However, knowledge of circulating miRs in humans in the context of HPH is very limited. Since symptoms of HPH are nonspecific and noninvasive diagnostic parameters do not exist, a disease-specific and hypoxemia-independent biomarker indicating HPH would be of clinical value. To examine whether plasma miR levels correlate with hypoxia-induced increase in pulmonary artery pressures, plasma miRs were assessed in a model of hypoxia-related pulmonary hypertension in humans exposed to extreme altitude. Forty healthy volunteers were repetitively examined during a high-altitude expedition up to an altitude of 7,050 m. Plasma levels of miR-17, -21, and -190 were measured by real-time quantitative PCR and correlated with systolic pulmonary artery pressure (SPAP), which was assessed by echocardiography. A significant altitude-dependent increase in circulating miR expression was found (all P values < 0.0001). Compared with baseline at 500 m, miR-17 changed by 4.72 ± 0.57-fold, miR-21 changed by 1.91 ± 0.33-fold, and miR-190 changed by 3.61 ± 0.54-fold at 7,050 m (means ± SD). Even after adjusting for hypoxemia, miR-17 and miR-190 were found to be independently correlated with increased SPAP. Progressive hypobaric hypoxia significantly affects levels of circulating miR-17, -21, and -190. Independently from the extent of hypoxemia, miR-17 and -190 significantly correlate with increased SPAP. These novel findings provide evidence for an epigenetic modulation of hypoxia-induced increase in pulmonary artery pressures by miR-17 and -190 and suggest the potential value of these miRs as biomarkers for HPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.