δ -AlOOH has been shown to be stable at the pressure–temperature conditions of the lower mantle. However, its stability remains uncertain at the conditions expected for the lowermost mantle where temperature is expected to rise quickly with increasing depth. Our laser-heated diamond-anvil cell experiments show that δ -AlOOH undergoes dehydration at ∼2000 K above 90 GPa. This dehydration temperature is lower than geotherm temperatures expected at the bottom ∼700 km of the mantle and suggests that δ -AlOOH in warm slabs would dehydrate in this region. Our experiments also show that the released H 2 O from dehydration of δ -AlOOH can react with metallic iron, forming iron oxide, iron hydroxide, and possibly iron hydride. Our observations suggest that H 2 O from the dehydration of subducting slabs, if it occurs, could alter the chemical composition of the surrounding mantle and core regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.