Strong evidence exists for interactions of zwitterionic phosphate and amine groups in sphingosine-1 phosphate (S1P) to conserved Arg and Glu residues present at the extracellular face of the third transmembrane domain of S1P receptors. The contribution of Arg 120 and Glu 121 for high-affinity ligand-receptor interactions is essential, because single-point R 120A or E 121 A S1P 1 mutants neither bind S1P nor transduce S1P function. Because S1P receptors are therapeutically interesting, identifying potent selective agonists with different binding modes and in vivo efficacy is of pharmacological importance. Here we describe a modestly water-soluble highly selective S1P 1 agonist [2-(4-(5-(3,4-diethoxyphenyl)-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl amino) ethanol (CYM-5442)] that does not require Arg 120 or Glu 121 residues for activating S1P 1 -dependent p42/p44 mitogen-activated protein kinase phosphorylation, which defines a new hydrophobic pocket in S1P 1 . CYM-5442 is a full agonist in vitro for S1P 1 internalization, phosphorylation, and ubiquitination. It is noteworthy that CYM-5442 was a full agonist for induction and maintenance of S1P 1 -dependent blood lymphopenia, decreasing B lymphocytes by 65% and T lymphocytes by 85% of vehicle. Induction of CYM-5442 lymphopenia was dose-and time-dependent, requiring serum concentrations in the 50 nM range. In vitro measures of S1P 1 activation by CYM-5442 were noncompetitively inhibited by a specific S1P 1 antagonist [(R)-3-amino-(3-hexylphenylamino)-4-oxobutylphosphonic acid (W146)], competitive for S1P, 2-amino-2-(4-octylphenethyl)propane-1,3-diol (FTY720-P), and 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2, 4-oxadiazole (SEW2871). In addition, lymphopenia induced by CYM-5442 was reversed by W146 administration or upon pharmacokinetic agonist clearance. Pharmacokinetics in mice also indicated that CYM-5442 partitions significantly in central nervous tissue. These data show that CYM-5442 activates S1P 1 -dependent pathways in vitro and to levels of full efficacy in vivo through a hydrophobic pocket separate from the orthosteric site of S1P binding that is headgroup-dependent.
Due to recent use of short-chain ceramides in preclinical studies, we characterized C6-ceramide metabolism in cancer cell lines and assessed metabolic junctures for enhancing efficacy. MDA-MB-231 breast cancer cells decreased the amount of C6-ceramide metabolized to C6-sphingomyelin (C6-SM) and increased the amount metabolized to C6-glucosylceramide (C6-GC) in response to increasing concentrations. A similar trend was seen in DU-145 (prostate cancer), PANC-1 (pancreatic cancer), and LoVo (colorectal cancer) cells. KG-1 leukemia cells favored C6-SM synthesis at low (0.6 μM) and high-dose (12 μM) C6-ceramide. Partnering C6-ceramide with tamoxifen, a P-glycoprotein antagonist that impedes ceramide glycosylation, was an effective regimen for enhancing cytotoxicity in cells. Experiments to assess the mechanism of cell death using KG-1 cells showed that tamoxifen inhibited synthesis of C6-GC and C6-SM from C6-ceramide by 80% and 50%, respectively, which was accompanied by enhanced apoptosis. Radiolabeling of KG-1 cells with [3H]palmitic acid produced a 2-fold increase in 3H-long-chain ceramides when unlabeled C6-ceramide was added and a 9-fold increase when C6-ceramide and tamoxifen were added. The increase in 3H-palmitate radiolabeling of long-chain ceramides was blocked by inclusion of a ceramide synthase inhibitor; however, inhibiting synthesis of long-chain ceramide did not rescue cells. These studies show that tamoxifen enhances the apoptotic effects of C6-ceramide. The proposed mechanism involves blocking short-chain ceramide anabolism to favor hydrolysis and generation of sphingosine. We propose that use of tamoxifen and other P-glycoprotein antagonists can be an effective means for enhancing cytotoxic potential of short-chain ceramides in the treatment of cancer.
We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family.
We combined electrophysiological and freeze-fracture methods to estimate the unitary turnover rate of the γ-aminobutyric acid (GABA) transporter GAT1. Human GAT1 was expressed in Xenopus laevis oocytes, and individual cells were used to measure and correlate the macroscopic rate of GABA transport and the total number of transporters in the plasma membrane. The twoelectrode voltage-clamp method was used to measure the transporter-mediated macroscopic current evoked by GABA ( ), macroscopic charge movements (Q NaCl ) evoked by voltage pulses and whole-cell capacitance. The same cells were then examined by freeze-fracture and electron microscopy in order to estimate the total number of GAT1 copies in the plasma membrane. GAT1 expression in the plasma membrane led to the appearance of a distinct population of 9-nm freeze-fracture particles which represented GAT1 dimers. There was a direct correlation between Q NaCl and the total number of transporters in the plasma membrane. This relationship yielded an apparent valence of 8 ± 1 elementary charges per GAT1 particle. Assuming that the monomer is the functional unit, we obtained 4 ± 1 elementary charges per GAT1 monomer. This information and the relationship between and Q NaCl were used to estimate a GAT1 unitary turnover rate of 15 ± 2 s −1 (21°C, −50 mV). The temperature and voltage dependence of GAT1 were used to estimate the physiological turnover rate to be 79-93 s −1 (37°C, −50 to −90 mV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.