The enteric nervous system (ENS) of the gastrointestinal tract controls many diverse functions, including motility and epithelial permeability. Perturbations in ENS development or function are common, yet there is no human model for studying ENS-intestinal biology and disease. We used a tissue-engineering approach with embryonic and induced pluripotent stem cells (PSCs) to generate human intestinal tissue containing a functional ENS. We recapitulated normal intestinal ENS development by combining human-PSC-derived neural crest cells (NCCs) and developing human intestinal organoids (HIOs). NCCs recombined with HIOs in vitro migrated into the mesenchyme, differentiated into neurons and glial cells and showed neuronal activity, as measured by rhythmic waves of calcium transients. ENS-containing HIOs grown in vivo formed neuroglial structures similar to a myenteric and submucosal plexus, had functional interstitial cells of Cajal and had an electromechanical coupling that regulated waves of propagating contraction. Finally, we used this system to investigate the cellular and molecular basis for Hirschsprung's disease caused by a mutation in the gene PHOX2B. This is, to the best of our knowledge, the first demonstration of human-PSC-derived intestinal tissue with a functional ENS and how this system can be used to study motility disorders of the human gastrointestinal tract.
Aims/hypothesisWe aimed to generate human embryonic stem cell (hESC) reporter lines that would facilitate the characterisation of insulin-producing (INS+) cells derived in vitro.MethodsHomologous recombination was used to insert sequences encoding green fluorescent protein (GFP) into the INS locus, to create reporter cell lines enabling the prospective isolation of viable INS+ cells.ResultsDifferentiation of INSGFP/w hESCs using published protocols demonstrated that all GFP+ cells co-produced insulin, confirming the fidelity of the reporter gene. INS-GFP+ cells often co-produced glucagon and somatostatin, confirming conclusions from previous studies that early hESC-derived insulin-producing cells were polyhormonal. INSGFP/w hESCs were used to develop a 96-well format spin embryoid body (EB) differentiation protocol that used the recombinant protein-based, fully defined medium, APEL. Like INS-GFP+ cells generated with other methods, those derived using the spin EB protocol expressed a suite of pancreatic-related transcription factor genes including ISL1, PAX6 and NKX2.2. However, in contrast with previous methods, the spin EB protocol yielded INS-GFP+ cells that also co-expressed the beta cell transcription factor gene, NKX6.1, and comprised a substantial proportion of monohormonal INS+ cells.Conclusions/interpretationINSGFP/w hESCs are a valuable tool for investigating the nature of early INS+ progenitors in beta cell ontogeny and will facilitate the development of novel protocols for generating INS+ cells from differentiating hESCs.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-011-2379-y) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
BackgroundMesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors.Principal FindingsWe identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through ‘temporal windows’ in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through ‘exit gates’ after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression.ConclusionsThese studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.