Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis.
Protein degradation in eukaryotic cells usually involves the attachment of a ubiquitin chain to a substrate protein and its subsequent sorting to the proteasome. Molecular mechanisms underlying the sorting process only recently began to emerge and rely on a cooperation of chaperone machineries and ubiquitin-chain recognition factors [1-3]. Here, we identify isoforms of the cochaperone HSJ1 as neuronal shuttling factors for ubiquitylated proteins. HSJ1 combines a J-domain that stimulates substrate loading onto the Hsc70 chaperone with ubiquitin interaction motifs (UIMs) involved in binding ubiquitylated chaperone clients. HSJ1 prevents client aggregation, shields clients against chain trimming by ubiquitin hydrolases, and stimulates their sorting to the proteasome. In this way, HSJ1 isoforms participate in ER-associated degradation (ERAD) and protect neurons against cytotoxic protein aggregation.
These findings suggest that AIPL1 may cooperate with both Hsp70 and Hsp90 within a retina-specific chaperone heterocomplex and that the specialized role of AIPL1 in photoreceptors may therefore be facilitated by these molecular chaperones.
Leber congenital amaurosis (LCA) is the most severe inherited retinal dystrophy resulting in markedly impaired vision or blindness at birth. LCA is characterized by an extinguished electroretinogram in infancy, which is thought to be indicative of an early and severe impairment of both the rod and cone photoreceptors in the human retina. Recently, the aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) gene was identified as the fourth causative gene of LCA. AIPL1 encodes a 384 amino acid protein of unknown function. We have generated a polyclonal antibody against a peptide from a unique region within the primate AIPL1 protein, which detects a protein of approximately 43 kDa in human retinal extracts. A screen of human tissues and immortalized cell lines with this antibody reveals AIPL1 to be specific to human retina and cell lines of retinal origin (Y79 retinoblastoma cells). Within the retina, AIPL1 was detected only in the rod photoreceptor cells of the peripheral and central human retina. The AIPL1 staining pattern extended within the rod photoreceptor cells from the inner segments, through the rod nuclei to the rod photoreceptor synaptic spherules in the outer plexiform layer. AIPL1 was not detected in the cone photoreceptors of peripheral or central human retina. This study is the first to suggest that AIPL1 performs a function essential to the maintenance of rod photoreceptor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.