Phosphonates are rare and unusually bioactive natural products. However, most bacterial phosphonate biosynthetic capacity is dedicated to tailoring cell surfaces with molecules like 2-aminoethylphosphonate (AEP). Although phosphoenolpyruvate mutase (Ppm)-catalyzed installation of C-P bonds is known, subsequent phosphonyl tailoring (Pnt) pathway steps remain enigmatic. Here we identify nucleotidyltransferases in over two-thirds of phosphonate biosynthetic gene clusters, including direct fusions to ~60% of Ppm enzymes. We characterize two putative phosphonyl tailoring cytidylyltransferases (PntCs) that prefer AEP over phosphocholine (P-Cho) – a similar substrate used by the related enzyme LicC, which is a virulence factor in
Streptococcus pneumoniae
. PntC structural analyses reveal steric discrimination against phosphocholine. These findings highlight nucleotidyl activation as a predominant chemical logic in phosphonate biosynthesis and set the stage for probing diverse phosphonyl tailoring pathways.
Germinating jack bean cotyledons liberated (14)CO2 when fed (14)C-guanidoxy-canavanine but did not accumulate any (14)C-compounds other than the applied canavanine. This suggested that the canavanine was being degraded by the action of canavanase to canaline and urea, the urea then being converted to ammonia and carbon dioxide by the action of urease. Hydroxyurea and acetohydroxamic acid (both inhibitors of urease activity) strongly inhibited the liberation of (14)CO2 from (14)C-guanidoxy-canavanine by the cotyledons but neither compound induced the accumulation of (14)C-urea within the tissues. This inhibitory action of hydroxyurea on (14)CO2 output was thought to be due at least in part, to this inhibition of canavanase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.