Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD.
Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder.
Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. expression quantitative loci (eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone.
The neuronal glutamate transporter gene SLC1A1 is a candidate gene for obsessive-compulsive disorder (OCD) based on linkage studies and convergent evidence implicating glutamate in OCD etiology. The 3' end of SLC1A1 is the only genomic region with consistently demonstrated OCD association, especially when analyzing male-only probands. However, specific allele associations have not been consistently replicated, and recent OCD genome-wide association and meta-analysis studies have not incorporated all previously associated SLC1A1 SNPs. To clarify the nature of association between SLC1A1 and OCD, pooled analysis was performed on all available relevant raw study data, comprising a final sample of 815 trios, 306 cases and 634 controls. This revealed weak association between OCD and one of nine tested SLC1A1 polymorphisms (rs301443; uncorrected P = 0.046; non-significant corrected P). Secondary analyses of male-affecteds only (N = 358 trios and 133 cases) demonstrated modest association between OCD and a different SNP (rs12682807; uncorrected P = 0.012; non-significant corrected P). Findings of this meta-analysis are consistent with the trend of previous candidate gene studies in psychiatry and do not clarify the putative role of SLC1A1 in OCD pathophysiology. Nonetheless, it may be important to further examine the potential associations demonstrated in this amalgamated sample, especially since the SNPs with modest associations were not included in the more highly powered recent GWAS or in a past meta-analysis including five SLC1A1 polymorphisms. This study underscores the need for much larger sample sizes in future genetic association studies and suggests that next-generation sequencing may be beneficial in examining the potential role of rare variants in OCD.
Tourette Syndrome (TS) is a childhood-onset neuropsychiatric disorder that is familial and highly heritable. Although genetic influences are thought to play a significant role in the development of TS, no definite TS susceptibility genes have been identified to date. TS is believed to be genetically related to both obsessive-compulsive disorder (OCD) and grooming disorders (GD) such as trichotillomania (TTM). SAP90/PSD95-associated protein 3 (SAPAP3/DLGAP3) is a post-synaptic scaffolding protein that is highly expressed in glutamatergic synapses in the striatum and has recently been investigated as a candidate gene in both OCD and GD studies. Given the shared familial relationship between TS, OCD and TTM, DLGAP3 was evaluated as a candidate TS susceptibility gene. In a family-based sample of 289 TS trios, 22 common single nucleotide polymorphisms (SNPs) in the DLGAP3 region were analyzed. Nominally significant associations were identified between TS and rs11264126 and two haplotypes containing rs11264126 and rs12141243. Secondary analyses demonstrated that these results cannot be explained by the presence of comorbid OCD or TTM in the sample. Although none of these results remained significant after correction for multiple hypothesis testing, DLGAP3 remains a promising candidate gene for TS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.