Having empathy in the design process can help engineers relate to the end user by identifying what and why certain experiences are meaningful. While there have been efforts to identify the factors that impact empathic tendencies in engineering, there has been limited evidence on how a students' trait empathy or empathic self-efficacy develops over a design project or what factors impact this development. The current study was developed to explore the development of students' trait empathy and empathic self-efficacy development and identify the underlying impact of the design project's context and course instructor through a study with 103 engineering students. Students' trait empathy and empathic self-efficacy were measured across each of the four design stages (problem formulation, concept generation, concept selection, and final conceptual design) during an 8-week project. The results highlight that students' trait empathy and empathic self-efficacy did not increase across design stages and the context of the design problem did not impact students' empathy development. Meanwhile, the course instructor negatively impacted students' empathic self-efficacy in one of the three course sections studied, and two of the three interviewed course instructors reduced the role of empathy in the concept generation and selection stages of the design process. These insights call for future research that could empirically assess the impact of trait empathy and empathic self-efficacy in driving design outcomes in the later design stages, which could increase engineering educators' awareness of the role of empathy in the engineering classroom.
Engineering design induces mental stress for students and the sources of stress for each stage of design are unique. Therefore, strategies are needed to manage the stress of engineering design that are applicable across the design process. This study investigated the effect of a brief mindfulness-based intervention on first-year students’ cognitive stress during concept generation, concept selection and physical modelling. It was found that the mindfulness-based intervention did increase one aspect of students’ state mindfulness (though the effect was small). While prior work indicates that increased mindfulness can lower perceived stress, the increase in students’ state mindfulness during this study was not found to have an observable impact on students’ stress experience. However, students were receptive to completing a mindfulness-based activity in-class and perceived multiple benefits. Physical modelling was the most stressful of the design tasks while concept generation and concept selection produced similar levels of stress. Students used five reoccurring mechanisms for coping with the stress of design including focusing on the task, minimising the importance of their performance, breathing, taking a break and avoidance/distraction. More research should be conducted with longer duration mindfulness-based interventions to understand their potential as a stress management strategy for engineering design.
Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.
In this Work-in-Progress (WIP) paper, we share how we address the urgent need to prepare Science, Technology, Engineering, and Mathematics (STEM) teachers and faculty with 21 st -century teaching and learning knowledge and skills. Engineering education is now provided across all levels of learning and yet a major constraint is the number of teachers and informal educators prepared to teach engineering content. While engineering higher education faculty are likely in possession of strong discipline-specific knowledge, they often enter the workforce without formal pedagogical training. Faculty may be lacking guidance on how to develop best-practice approaches for pedagogical content knowledge or how to effectively teach students literacy within a discipline. Across our nation's educational landscape, engineering education graduate programs housed in engineering and education schools are striving to meet this ongoing demand for more and qualified engineering educators. At our university, we are looking to enter this market and develop a master's level program in engineering education focusing on providing discipline-specific, evidence-based pedagogy to students with engineering backgrounds and students with education backgrounds. This work, based on current gathered data and perspectives, raises fundamental questions about audience, purpose, and transformative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.