Because ectotherm activity and metabolism are sensitive to temperature, terrestrial arthropods may be especially responsive to ongoing climatic warming. Here, we quantified responses of arthropod abundance to two years of warming in an outdoor temperature manipulation experiment at Duke Forest, North Carolina, USA. Nine open‐top chambers were individually heated year‐round from 1.5° to 5.5°C above ambient temperature. From two years of monthly pitfall trapping, we collected and identified 4,468 arthropods representing 24 orders. We initially predicted that arthropods would experience the greatest negative effects of experimental warming during the summer months, when temperatures reach their yearly maximum and arthropods may be close to their maximum thermal tolerance limits. Instead, we found that the strongest negative effects on arthropod abundance occurred during the winter and spring, when ambient temperatures are relatively cooler, whereas the effects of experimental warming on abundance were not significant during the summer or fall. During the spring of 2012, the warmest spring on record for the southeastern USA, total arthropod abundance declined 20% per °C of experimental warming. Abundance declines were driven largely by flies (Diptera), which were the most abundant insect order, representing approximately a third of all arthropods collected. The most abundant arthropod family, Mycetophilidae (fungus gnats), declined 64% per °C of warming during the spring of 2012. Although previous research on climatic warming has focused on the impact of maximum yearly temperatures on organismal performance, our results are more consistent with the cool‐season sensitivity hypothesis, which posits that arthropods adapted for cooler conditions are likely to face the strongest negative effects of warming during the cooler seasons.
Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.
Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.