Optical fiber gratings have developed into a mature technology with a wide range of applications in various areas, including physical sensing for temperature, strain, acoustic waves and pressure. All of these applications rely on the perturbation of the period or refractive index of a grating inscribed in the fiber core as a transducing mechanism between a quantity to be measured and the optical spectral response of the fiber grating. This paper presents a relatively recent variant of the fiber grating concept, whereby a small tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape. The main consequence of doing so is that the differential response of the modes can then be used to multiply the sensing modalities available for a single fiber grating and also to increase the sensor resolution by taking advantage of the large amount of data available. In particular, the temperature cross-sensitivity and power source fluctuation noise inherent in all fiber grating designs can be completely eliminated by referencing all the spectral measurements to the wavelength and power level of the core mode back-reflection. The mode resonances have a quality factor of 10 5 , and they can be observed in reflection or transmission. A thorough review of experimental and theoretical results will show that tilted fiber Bragg gratings can be used for high resolution refractometry, surface plasmon resonance applications, and multiparameter physical sensing (strain, vibration, curvature, and temperature).
A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging Appl. Phys. Lett. 101, 021108 (2012) Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links Rev. Sci. Instrum. 83, 10D710 (2012) Analytical analysis of modulation instability in fiber optics AIP Advances 2, 022168 (2012) Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers
This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann-Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). Configurations involving the excitation of surface plasmon polaritons (SPP) on continuous thin metal layers as well as those involving localized SPR (LSPR) phenomena in nanoparticle metal coatings of gold, silver, and other metals at visible and near-infrared wavelengths are described and compared quantitatively.
Short-period fiber Bragg gratings with weakly tilted grating planes generate multiple strong resonances in transmission. Our experimental results show that the wavelength separation between selected resonances allows the measurement of the refractive index of the medium surrounding the fiber for values between 1.25 and 1.44 with an accuracy approaching 1x10(-4). The sensor element is 10 mm long and made from standard single-mode telecommunication grade optical fiber by ultraviolet light irradiation through a phase mask.
The transmission spectrum of fiber Bragg gratings with gratings planes tilted at a small angle (2 degrees -10 degrees) relative to the fiber axis shows a large number of narrowband cladding mode resonances within a 100 nm wide spectrum. When a gold coating with a thickness between 10 and 30 nm is deposited on the fiber, the transmission spectrum shows anomalous features for values of the outside medium refractive index between 1.4211 and 1.4499. These features are shown to correspond to the excitation of surface plasmon resonances at the external surface of the gold film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.