Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.
SummaryWood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests.We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats.Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats.We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention.
The amount of carbon stored in deadwood is equivalent to about 8% of global forest carbon stocks 1 . Deadwood decomposition is largely governed by climate [2][3][4][5] with decomposer groups, such as microbes and insects, contributing to variations in decomposition rates 2,6,7 . At the global scale, the contribution of insects to deadwood decomposition and carbon release remains poorly understood 7 . Here we present a field experiment of wood decomposition across 55 forest sites on six continents. We find that deadwood decomposition rates increase with temperature, with the strongest temperature effect at high precipitation levels. Precipitation affects decomposition rates negatively at low temperature and positively at high temperatures. As net effect, including direct consumption and indirect effects via interactions with microbes, insects accelerate decomposition in tropical forests (3.9% median mass loss per year).In temperate and boreal forests we find weak positive and negative effects with a median mass loss of 0.9% and -0.1% per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesised from empirical and remote sensing data. This allows for a first estimate of 10.9 ± 3.2 Pg yr -1 of carbon released from deadwood globally, with 93% originating from tropical forests. Globally, the net effect of insects accounts for a carbon flux of 3.2 ± 0.9 Pg yr -1 or 29% of the total carbon released from deadwood, which highlights the functional importance of insects for deadwood decomposition and the global carbon cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.