Many approaches have been proposed in the literature to reduce energy consumption in Wireless Sensor Networks (WSNs). Influenced by the fact that radio communication and sensing are considered to be the most energy consuming activities in such networks. Most of these approaches focused on either reducing the number of collected data using adaptive sampling techniques or on reducing the number of data transmitted over the network using prediction models. In this article, we propose a novel prediction-based data reduction method. furthermore, we combine it with an adaptive sampling rate technique, allowing us to significantly decrease energy consumption and extend the whole network lifetime. To validate our work, we tested our approach on real sensor data collected at our offices. The final results were promising and confirmed our theoretical claims.
Energy prediction is in high importance for smart homes and smart cities, since it helps reduce power consumption and provides better energy and cost savings.Many algorithms have been used for predicting energy consumption using data collected from Internet of Things (IoT) devices and wireless sensors. In this paper, we propose a system based on Multilayer Perceptron (MLP) to predict energy consumption of a building using collected information (e.g., light energy, day of the week, humidity, temperature, etc.) from a Wireless Sensor Network (WSN). We compare our system against four other classification algorithms, namely: Linear Regression (LR), Support Vector Machine (SVM), Gradient Boosting Machine (GBM) and Random Forest (RF). We achieve state-of-the-art results with 64% of the coefficient of Determination R 2 , 59.84% Root Mean Square Error (RMSE), 27.28% Mean Absolute Error (MAE) and 27.09% Mean Absolute Percentage Error (MAPE) in the testing set when using weather and temporal data.
In a resource-constrained Wireless Sensor Networks (WSNs), the optimization of the sampling and the transmission rates of each individual node is a crucial issue. A high volume of redundant data transmitted through the network will result in collisions, data loss, and energy dissipation. This paper proposes a novel data reduction scheme, that exploits the spatial-temporal correlation among sensor data in order to determine the optimal sampling strategy for the deployed sensor nodes. This strategy reduces the overall sampling/transmission rates while preserving the quality of the data. Moreover, a back-end reconstruction algorithm is deployed on the workstation (Sink). This algorithm can reproduce the data that have not been sampled by finding the spatial and temporal correlation among the reported data set, and filling the "nonsampled" parts with predictions. We have used real sensor data of a network that was deployed at the Grand-St-Bernard pass located between Switzerland and Italy. We tested our approach using the previously mentioned data-set and compared it to a recent adaptive sampling based data reduction approach. The obtained results show that our proposed method consumes up to 60% less energy and can handle nonstationary data more effectively.
Cloud computing is an Internet‐based computing where the information technology resources are provided to end users following their request. With this technology, users and businesses can access programs, storage, and application development platforms through the Internet and via the services offered by the cloud service providers (CSPs). One of the biggest obstructions in the cloud computing environment is data security. Actually, the data are dispersed across multiple machines and storage devices such as servers, computers, and various mobile devices. The uncontrolled access to these resources and data leads to many important data security risks for the end users. In this way, and in order to ensure the reliability of the cloud and the trust of the users regarding this environment, controlling access to data and resources as well as protecting and ensuring their security becomes a critical task for CSPs. In this work, we present a comprehensive review of existing access control mechanisms used in the cloud computing environment. The advantages and disadvantages of each of these models are discussed and presented along with their analysis. Also, we study the cloud requirements of these models, and we evaluate existing control mechanisms against these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.