D. simulans and D. melanogaster present two types of polymorphism in their cuticular hydrocarbon (HC) composition. Especially both sexes of D. simulans, and D. melanogaster males display 7-tricosene (7T) as the major compound type [7T]s and [7T]m, or 7-pentacosene (7P) [7P]s and [7P]m. D. melanogaster females display 7,11-heptacosadiene (7,11HD) as the major compound: [7,11HD]m, or 5,9-heptacosadiene (5,9HD): [5,9HD]m. The [7P]s, [7P]m and [5,9HD]m are mainly present in central Africa. A significant correlation was found between latitude and the proportion of compounds with 23 and 25 carbon atoms, especially 7T and 7P in both sexes of D. melanogaster. [7P]m type of D. melanogaster, characterized with an excess of C25 compounds, presents a higher resistance against desiccation than [7T]m type, where C23 compounds are more abundant. These differences can be correlated with calculated HC fusion temperatures. Moreover, increasing the breeding temperature from 18 to 29 degrees C induces in D. melanogaster males an increase in 25C compounds and a decrease in 23C compounds, but the opposite effect in D. simulans. A mathematical model of biosynthesis, based on kinetics of elongation and decarboxylation enzymes, suggests that a simple variation of the efficiency of an elongation enzyme may account for the differences observed between the [7T]m and [7P]m types of D. melanogaster and [7T]s and [7P]s types D. simulans. Finally on the basis of the geographical distribution of the HC types of both Drosophila species, an evolutionary dispersal pathway is proposed and discussed in relation to the environment and reproductive behavior.
The identification of genes with large effects on sexual isolation and speciation is an important link between classic evolutionary genetics and molecular biology. Few genes that affect sexual isolation and speciation have been identified, perhaps because many traits influencing sexual isolation are complex behaviors. Cuticular hydrocarbons (CHs) of species of the Drosophila melanogaster group play a large role in sexual isolation by functioning as contact pheromones influencing mate recognition. Some of the genes that play key roles in determining species-specific CHs have been identified. We have performed separate quantitative trait locus (QTL) analyses of 7-tricosene (7-T) and 7,11-heptacosadiene (7,11-HD), the two major female CHs differing between D. simulans and D. sechellia. We find that 40% of the phenotypic variance in each CH is associated with two to four chromosomal regions. A region on the right arm of chromosome 3 contains QTL that affect both traits, but other QTL are in distinct chromosomal regions. Epistatic interactions were detected between two pairs of QTL for 7,11-HD such that if either were homozygous for the D. simulans allele, the fly was similar to D. simulans in phenotype, with a low level of 7,11-HD. We discuss the location of these regions with regard to candidate genes for CH production, including those for desaturases.
The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements. To define the distribution, their structural diversity and phylogenetic relationships, analyses were conducted using known PBLE and PGBD sequences to scan databases. From this data mining, numerous new sequences were characterized (50 for PBLE and 396 for PGBD). Structural analyses suggest that four groups of PBLE can be defined according to the presence/absence of sub-terminal repeats. The transposase is characterized by highly variable catalytic domain and C-terminal region. There is no relationship between the structural groups and the phylogeny of these PBLE elements. The PGBD are clearly structured into nine main groups. A new group of domesticated elements is suspected in Neopterygii and the remaining eight previously described elements have been investigated in more detail. In all cases, these sequences are no longer transposable elements, the catalytic domain of the ancestral transposase is not always conserved, but they are under strong purifying selection. The phylogeny of both PBLE and PGBD suggests multiple and independent domestication events of PGBD from different PBLE ancestors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.