Oils containing both fluorescent semiconductor and magnetic oxide nanoparticles are used to produce oil in water emulsions. This technique produces oil droplets with homogeneous fluorescence and high magnetic nanoparticle concentrations. The optical properties of the oil droplets are studied as a function of the droplet sizes for various concentrations of fluorescent and magnetic nanoparticles. For all concentrations tested, we find a linear variation of the droplet fluorescent intensity as a function of the droplet volume. For a given size and a given quantum dot (QD) concentration, the droplet fluorescence intensity drops sharply as a function of the magnetic nanoparticle concentration. We show that this decrease is due mainly to the strong absorption cross section of the magnetic nanoparticles and to a lesser extent to the dynamic and static quenching of the QD fluorescence. The role of the iron oxide nanoparticle localization in the droplet (surface versus volume) is also discussed.
Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. Herein we designed monodisperse, IgG-coated emulsion droplets that are efficiently and specifically internalized by macrophages through in-vitro FcγR-mediated phagocytosis. We show that, contrary to solid polymeric beads, droplet uptake is efficient even for low IgG densities, and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake.
International audienceBiotechnological applications of emulsions, such as micro-reactors or drug carriers, demand accurate characterization techniques, able to measure the size and biochemical content of the droplets at the individual level. Since no available characterization technique completely fulfills these needs, we extended the use of flow cytometry, which was originally developed for cell studies, to the straightforward and quantitative characterization of micron-sized emulsions. Our method determines the size of soybean oil droplets from flow cytometric measurements of forward scattering and side scattering intensities combined with the theoretical scattered intensities exactly derived from Mie theory and numerically integrated with respect to the optical setup of the instrument. We evaluate the accuracy of our method by comparing the size distribution obtained for a monodisperse emulsion sample to the corresponding distribution measured with a commercial instrument. Applied to emulsion droplets functionalized with fluorescent streptavidin, our method allows for monitoring of the rate of grafted molecules on interfaces with a precision never obtained before
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.