P-glycoprotein (Pgp), the so-called multidrug transporter, is a plasma membrane glycoprotein often involved in the resistance of cancer cells towards multiple anticancer agents in the multidrug-resistant (MDR) phenotype. It has long been recognized that the lipid phase of the plasma membrane plays an important role with respect to multidrug resistance and Pgp because: the compounds involved in the MDR phenotype are hydrophobic and diffuse passively through the membrane; Pgp domains involved in drug binding are located within the putative transmembrane segments; Pgp activity is highly sensitive to its lipid environment; and Pgp may be involved in lipid trafficking and metabolism. Unraveling the different roles played by the membrane lipid phase in MDR is relevant, not only to the evaluation of the precise role of Pgp, but also to the understanding of the mechanism of action and function of Pgp. With this aim, I review the data from different fields (cancer research, medicinal chemistry, membrane biophysics, pharmaceutical research) concerning drug±membrane, as well as Pgp±membrane, interactions. It is emphasized that the lipid phase of the membrane cannot be overlooked while investigating the MDR phenotype. Taking into account these aspects should be useful in the search of ways to obviate MDR and could also be relevant to the study of other multidrug transporters.
The multidrug transporter P-glycoprotein is a plasma membrane protein involved in cell and tissue detoxification and the multidrug resistance (MDR) phenotype. It actively expels from cells a number of cytotoxic molecules, all amphiphilic but chemically unrelated. We investigated the molecular characteristics involved in the binding selectivity of P-glycoprotein by means of a molecular modeling approach using various substrates combined with an enzymological study using these substrates and native membrane vesicles prepared from MDR cells. We determined affinities and mutual relationships from the changes in P-glycoprotein ATPase activity induced by a series of cyclic peptides and peptide-like compounds, used alone or in combination. Modeling of the intramolecular distribution of the hydrophobic and polar surfaces of this series of molecules made it possible to superimpose some of these surface elements. These molecular alignments were correlated with the observed mutual exclusions for binding on P-glycoprotein. This led to the characterization of two different, but partially overlapping, pharmacophores. On each of these pharmacophores, the ligands compete with each other. The typical MDR-associated molecules, verapamil, cyclosporin A, and actinomycin D, bound to pharmacophore 1, whereas vinblastine bound to pharmacophore 2. Thus, the multispecific binding pocket of P-glycoprotein can be seen as sites, located near one another, that bind ligands according to the distribution of their hydrophobic and polar elements rather than their chemical motifs. The existence of two pharmacophores increases the possibilities for multiple chemical structure recognition. The size of the ligands affects their ability to compete with other ligands for binding to P-glycoprotein.
A series of 28 flavonoid derivatives containing a N-benzylpiperazine chain have been synthesized and tested for their ability to modulate multidrug resistance (MDR) in vitro. At 5 microM, most compounds potentiated doxorubicin cytotoxicity on resistant K562/DOX cells. They were also able to increase the intracellular accumulation of JC-1, a fluorescent molecule recently described as a probe of P-glycoprotein-mediated MDR. This suggests that these compounds act, at least in part, by inhibiting P-glycoprotein activity. As in other studies, lipophilicity was shown to influence MDR-modulating activity but was not the only determinant. Diverse di- and trimethoxy substitutions on N-benzyl were examined and found to affect the activity differently. The most active compounds had a 2,3, 4-trimethoxybenzylpiperazine chain attached to either a flavone or a flavanone moiety (13, 19, 33, and 37) and were found to be more potent than verapamil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.