Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATPdependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of -xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of -xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.The bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) catalyzes the transport and concomitant phosphorylation of carbohydrates via a protein phosphorylation chain including PEP-dependent phosphorylation of His-15 in histidine-containing protein (HPr) by enzyme I (EI). P-His-HPr phosphorylates the sugar-specific EIIAs. In Gram-positive bacteria, the PTS regulates also induction and carbon catabolite repression (CCR) of numerous catabolic genes (1). The central regulatory protein involved in these various functions is HPr. In Gram-positive bacteria, this small phosphoryl transfer protein can be phosphorylated at a regulatory serine (Ser-46) by ATP and the HPr kinase (2, 3), in addition to phosphorylation at the catalytic His-15 by PEP and EI (4, 5). PEP-dependent and ATP-dependent phosphorylation of HPr interfere with each other-i.e., P-His-HPr is a poor substrate for the HPr kinase and P-Ser-HPr is a poor substrate for EI (6, 7). ATP-dependent phosphorylation of HPr is stimulated by glycolytic intermediates such as fructose-1,6-bisphosphate (FBP) in Enterococcus faecalis (6) and in Streptococcus pyogenes (7). It has been reported that FBP is also implicated in CCR of the Bacillus subtilis gnt and iol operons (8, 9), and a potential role of phosphorylation of HPr at Ser-46 in CCR has therefore been investigated (10). The gnt operon contains the genes gntRKPZ encoding the repressor GntR, gluconate kinase, gluconate permease, and a gluconate-6-Pdehydrogenase (11), whereas the iol operon is composed of 10 genes encoding enzymes presumably implicated in inositol metabolism, including iolG encoding inositol dehydro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.