A divergent selection experiment on within-litter homogeneity of birth weight in rabbits was carried out at the INRA experimental farm at Auzeville. The two lines were created by selecting breeding does and bucks from the female strain AGP22 bred at the Grimaud Frères Sélection Company. This involved a new model incorporating a genotypic value for the mean of individual birth weight and a genotypic value for the environmental variance. This new "trait" was modelled in the usual infinitesimal framework, giving estimated breeding values for environmental variability. There was a favourable selection response with a significant difference in within-litter standard deviation of birth weight between the lines selected for increasing (HOM) or decreasing (HET) homogeneity. At the end of the third generation, 31 females from the HOM line and 33 from the HET line were sacrificed to collect the uterine horns and measure their initial length (L1) and their length after elongation with a weight of 50 g (L2) and then 70 g (L3). The length in the homogeneous line was significantly greater, whatever the weight (L1: + 1.3 cm, P = 0.02; L2: + 2.8 cm P b 0.001; L3: + 4.2 cm, P b 0.001). The absolute and the relative elongations were significantly higher in the HOM line. There was no significant effect of the line on the number of ova shed, the weight of the ovary, or the weight of the uterine horns. It is concluded that the divergence between lines for the within-litter homogeneity of birth weight is at least partly due to the characteristics of the genital tract, i.e. the length and capacity for elongation of the uterine horn.
Selection for disease resistance is a powerful way to improve the health status of herds and to reduce the use of antibiotics. The objectives of this study were to estimate 1) the genetic parameters for simple visually assessed disease syndromes and for a composite trait of resistance to infectious disease including all syndromes and 2) their genetic correlations with production traits in a rabbit population. Disease symptoms were recorded in the selection herds of 2 commercial paternal rabbit lines during weighing at the end of the test (63 and 70 d of age, respectively). Causes of mortality occurring before these dates were also recorded. Seven disease traits were analyzed: 3 elementary traits visually assessed by technicians on farm (diarrhea, various digestive syndromes, and respiratory syndromes), 2 composite traits (all digestive syndromes and all infectious syndromes), and 2 mortality traits (digestive mortality and infectious mortality). Each animal was assigned only 1 disease trait, corresponding to the main syndrome ( = 153,400). Four production traits were also recorded: live weight the day before the end of test on most animals ( = 137,860) and cold carcass weight, carcass yield, and perirenal fat percentage of the carcass on a subset of slaughtered animals ( = 13,765). Records on both lines were analyzed simultaneously using bivariate linear animal models after validation of consistency with threshold models applied to logit-transformed traits. The heritabilities were low for disease traits, from 0.01 ± 0.002 for various digestive syndromes to 0.04 ± 0.004 for infectious mortality, and moderate to high for production traits. The genetic correlations between digestive syndromes were high and positive, whereas digestive and respiratory syndromes were slightly negatively correlated. The genetic correlations between the composite infectious disease trait and digestive or respiratory syndromes were moderate. Genetic correlations between disease and production traits were favorable. Our results indicate that it is possible to select rabbits using visually assessed disease syndromes without the need for a trade-off between health and production traits. Using a composite criterion that includes all infectious syndromes is easy to implement and heritable and is, therefore, a promising way to improve the general disease resistance in livestock species.
Breeding for disease resistance is a challenging but increasingly necessary objective to overcome the issues with the reduced use of antibiotics and growing concern for animal welfare while limiting economic losses. However, implementing such strategies is a complex process because animals face numerous diseases, and the environments on selection farms differ from those on commercial farms. We evaluated whether selection for resistance to non-specific diseases based on a single visual record in selection (S) and challenging (Ch) environments is possible. Records from 23,773 purebred rabbits born between 2012 and 2016 were used in this study. After weaning (at 32 days of age), 17,712 rabbits were raised in the S environment and 6,061 sibs were raised in the Ch environment. Clinical signs of disease were recorded for all animals at the end of the test, at a single time point, at 70 or 80 days of age. The causes of mortality occurring before the end of the test were also recorded. Three disease traits were analyzed: signs of respiratory disease, signs of digestive disease, and a composite trait (Resist) taking into account signs of digestive, respiratory and various infectious diseases. This latter composite trait is proposed to capture the global resistance to disease. All disease traits were binary, with 0 being the absence of symptoms. Two production traits were also recorded: the number of kits born alive (4,121 litters) and the weaning weight (13,090 rabbits). Disease traits were analyzed with animal threshold models, assuming that traits are different in the two environments. Bivariate analyses were carried out using linear animal models. The heritabilities of the disease traits ranged from 0.04 ± 0.01 to 0.11 ± 0.03. The genetic correlations between disease traits in both environments were below unity (≤ 0.84), indicating genotype by environment interactions. Most of the genetic correlations between disease and production traits were not significantly different from zero, except between the weaning weight and Resist_S, with a favorable correlation of −0.34 ± 0.12. Given these genetic parameters, for the same level of exposure of rabbits to pathogens, the expected response to selection is a reduction of disease incidence of 4–6% per generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.