As an inflammatory cell, the macrophage produces various oxidizing agents, such as free radical species. These can modify LDL as a secondary effect and doing so may favor atherogenic processes. Any molecule able to counteract these reactions would be of much benefit, especially if secreted by the macrophage itself at the lesion site. Such is the case for apolipoprotein E (apoE), which has been shown to exert antioxidant properties in some studies, mostly in relation to Alzheimer's disease. In this study, we assessed the antioxidant potential of the various isoforms of apoE (E2, E3, and E4) using a metal-induced LDL oxidation system with exogenous recombinant apoE and an in vitro model of macrophage-mediated LDL oxidation. We found that all three isoforms had an antioxidant capacity. However, whereas apoE2 was the most protective isoform in the cell-free system, the opposite was observed in apoE-transfected J774 macrophages. In the latter model, cellular cholesterol efflux was found to be more important with apoE2, possibly explaining the larger quantity of oxidative indices observed in the medium. It is proposed that the antioxidant property of apoE results from a balance between direct apoE antioxidant capacities, such as the ability to trap free radicals, and potentially pro-oxidative indirect events associated with cholesterol efflux from cells. Our observations add to the therapeutic potential of apoE. However, they also suggest the need for more experiments in order to achieve careful selection of the apoE isoform to be targeted, especially in the perspective of apoE transgene use.
The present study sought to resolve the contradictory evidence as to whether the G-->A substitution at position -75 of the apoA-I gene promoter raises HDL cholesterol (HDL-C) levels by examining the effect of this polymorphism in French Canadians, a relatively genetically homogeneous population. Among 308 women, carriers of the A allele displayed 12% and 10% higher mean plasma HDL-C and apoA-I concentrations, respectively, than did noncarriers. Among 345 men, no effect of the A allele was noted. The frequency distribution of HDL-C levels in women carrying the A but not the G allele appeared bimodal, with one peak corresponding to the mean of the noncarriers and a second to higher HDL-C. Thus it appears that only a subset of A alleles confers high HDL-C levels. This hypothesis was supported by data from four kindreds within which some but not all A alleles segregated with hyperalphalipoproteinemia. The data suggest that the A substitution in the apoA-I gene promoter does not directly confer high HDL-C levels but may be in linkage disequilibrium with other sequence polymorphism(s) at this locus in a subset of alleles that raise HDL-C levels.
We describe a four-generation kindred with familial hypercholesterolemia (FH) in which two of the eight heterozygotes for a 5-kb deletion (exons 2 and 3) in the low density lipoprotein (LDL) receptor gene were found to have normal LDL-cholesterol levels. In our search for a gene responsible for the cholesterol-lowering effect in this family, we have studied variation in the genes encoding the LDL receptor, apolipoprotein (apo) B, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, apoAI-CIII-AIV, and lipoprotein lipase. The analysis showed that it was unlikely that variation in any of these genes was responsible for the cholesterol-lowering effect. Expression of the LDL receptor, as assessed in vitro with measurements of activity and mRNA levels, was similar in normo and hyperlipidemic subjects carrying the deletion. Analysis of the apo E isoforms revealed that most of the e2 allele carriers in this family, including the two normolipidemic 5-kb deletion carriers, were found to have LDL-cholesterol levels substantially lower than subjects with the other apo E isoforms. Thus, this kindred provides evidence for the existence of a gene or genes, including the apo e2 allele, with profound effects on LDL-cholesterol levels.
Sterol regulatory element-binding proteins (SREBPs) are transcription factors governing transcription of genes related to cholesterol and fatty acid metabolism. To become active, SREBPs must undergo a proteolytic cleavage to allow an active NH(2)-terminal segment to translocate into the nucleus. SKI-1/S1P is the first protease in the proteolytic activation cascade of SREBPs. SREBP inhibition may be useful, for example, in the treatment of liver steatosis caused by homocysteine-induced lipid synthesis. Accordingly, we overexpressed inhibitory prodomains (proSKI) of SKI-1/S1P in HepG2 cells to block SREBP activation to evaluate the potential of SKI-1/S1P in controlling cellular cholesterol synthesis. SKI-1/S1P inhibition resulted in reduced cholesterol synthesis and mRNA levels of the rate-limiting enzymes, HMG-CoA reductase and squalene epoxidase, in the cholesterol synthetic pathway. The inhibitory effect was maintained in the presence of homocysteine-induced endoplasmic reticulum stress. A gene set enrichment analysis was performed to elucidate other metabolic effects caused by SKI-1/S1P inhibition. SKI-1/S1P inhibition was observed to affect a number of other metabolic pathways, including glycolysis and citric acid cycle. These results demonstrate that inhibition of SREBPs decreases cholesterol synthesis in HepG2 cells both in the absence and presence of homocysteine. SKI-1/S1P inhibition may cause widespread changes in other key metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.