Studies were conducted to test the effects of various auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis from shoot apices of pea (Pisum sativum L.) cultured on a sole medium. Picloram (4.5 #M) and 4-chlorophenoxyacetic acid (45 #M) were the most effective auxins. Addition of cytokinins (benzyladenine, zeatin, kinetin) to auxin-containing medium reduced embryo production. Amino acids (glutamine, alanine, proline) did not improve somatic embryogenesis. Carbohydrate seemed to be a critical factor. Embryogenic efficiency and embryo development were promoted by high carbohydrate concentration. The best results were obtained with fructose (252-504 mM); the number of somatic embryos per cultured explant was 3-to 4-fold higher compared to the control (84 mM sucrose). From these results, an optimized induction medium is proposed.
Pea seed development on the mother plant consists of three phases, all limited by water concentration (WC). The first (P1) or embryogenesis sensu stricto takes place at constant WC (stable at 80%). During the phase P2, cotyledon filling or maturation, WC decreases linearly from 80 to 55% (physiological desiccation) but the water content stays constant while the dry weight increases until it stops abruptly (at 55% WC), at this time, the seed has almost reached its final dry weight, its maturity mass or physiological maturity. The third phase, P3, consists of a fast desiccation which leads to a WC of 18–14%, where the seed is mature and ready to harvest. Similar events occur in other grain legumes, in cereals where mass maturity is attained at a lower WC (close to 40%) and in other species including crop or weed species. An elementary model of pea seed dry-matter accumulation, based on the constancy of water content (P1) and the linear decrease of WC from 80 to 55% (P2), allows us to define a coefficient α linked to WC and to calculate dry matter changes versus α. This model, taking account of WC in other species, can be generalized easily. Maturation of the somatic embryo, occurring under conditions very close to those present in vivo around the zygotic embryo, follows a pattern of decrease of WC similar to that of the zygotic embryo. We expect that if cell number is similar in the somatic and the zygotic embryo, synseeds will be ready for trade in the near future since control of all the processes that lead to zygotic-like embryoids is now available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.