Uncovering the genomic basis of climate adaptation in traditional crop varieties can provide insight into plant evolution and facilitate breeding for climate resilience. In the African cereal sorghum (Sorghum bicolor L. [Moench]), the genomic basis of adaptation to the semiarid Sahelian zone versus the subhumid Soudanian zone is largely unknown. To address this issue, we characterized a large panel of 421 georeferenced sorghum landrace accessions from Senegal and adjacent locations at 213,916 single‐nucleotide polymorphisms (SNPs) using genotyping‐by‐sequencing. Seven subpopulations distributed along the north‐south precipitation gradient were identified. Redundancy analysis found that climate variables explained up to 8% of SNP variation, with climate collinear with space explaining most of this variation (6%). Genome scans of nucleotide diversity suggest positive selection on chromosome 2, 4, 5, 7, and 10 in durra sorghums, with successive adaptation during diffusion along the Sahel. Putative selective sweeps were identified, several of which colocalize with stay‐green drought tolerance (Stg) loci, and a priori candidate genes for photoperiodic flowering and inflorescence morphology. Genome‐wide association studies of photoperiod sensitivity and panicle compactness identified 35 and 13 associations that colocalize with a priori candidate genes, respectively. Climate‐associated SNPs colocalize with Stg3a, Stg1, Stg2, and Ma6 and have allelic distribution consistent with adaptation across Sahelian and Soudanian zones. Taken together, the findings suggest an oligogenic basis of adaptation to Sahelian versus Soudanian climates, underpinned by variation in conserved floral regulatory pathways and other systems that are less understood in cereals.
Local landrace and breeding germplasm is a useful source of genetic diversity for regional and global crop improvement initiatives. Sorghum (Sorghum bicolor L.Moench) in western Africa (WA) has diversified across a mosaic of cultures and end uses and along steep precipitation and photoperiod gradients. To facilitate germplasm utilization, a West African sorghum association panel (WASAP) of 756 accessions from national breeding programs of Niger, Mali, Senegal, and Togo was assembled and characterized. Genotyping-by-sequencing (GBS) was used to generate 159,101 high-quality biallelic single nucleotide polymorphisms (SNPs), with 43% in intergenic regions and 13% in genic regions. High genetic diversity was observed within the WASAP (π = .00045), only slightly less than in a global diversity panel (GDP) (π = .00055). Linkage disequilibrium (LD) decayed to background level (r 2 < .1) by ∼50 kb in the WASAP. Genome-wide diversity was structured both by botanical type and by populations within botanical type with eight ancestral populations identified. Most populations were distributed across multiple countries, suggesting several potential common gene pools across the national programs. Genome-wide association studies (GWAS) of days to flowering (DFLo) and plant height (PH) revealed eight and three significant quantitative trait loci (QTL), respectively, with major height QTL at canonical height loci Dw3 and SbHT7.1. Colocalization of two of eight major flowering time QTL with flowering genes previously described in U.S. germplasm (Ma6 and SbCN8) suggests that photoperiodic flowering in West African sorghum is conditioned by both known and novel genes. This genomic resource provides a foundation for genomics-enabled breeding of climate-resilient varieties in WA.
Running head: West African sorghum genomics resource Core ideas: 1. A West African sorghum panel (n = 756) was assembled from four national programs.2. Over 150,000 genome-wide nucleotide polymorphisms were genotyped by sequencing.3. Diversity was structured by subpopulation within botanical type and across countries. 4. Known genes and novel loci for flowering time and plant height were identified. AbstractLocal landrace and breeding germplasm is a useful source of genetic diversity for regional and global crop improvement initiatives. Sorghum ( Sorghum bicolor L. Moench) in West Africa has diversified across a mosaic of cultures and end-uses, and along steep precipitation and photoperiod gradients. To facilitate germplasm utilization, a West African sorghum association panel (WASAP) of 756 accessions from national breeding programs of Niger, Mali, Senegal, and Togo was assembled and characterized. Genotyping-by-sequencing was used to generate 159,101 high-quality biallelic SNPs, with 43% in intergenic regions and 13% in genic regions. High genetic diversity was observed within the WASAP (π = 0.00045), only slightly less than in a global diversity panel (π = 0.00055). Linkage disequilibrium decayed to background level ( r 2 < 0.1) by ~50 kb in the WASAP. Genome-wide diversity was structured both by botanical type, and by populations within botanical type, with eight ancestral populations identified. Most populations were distributed across multiple countries, suggesting several potential common gene pools across the national programs. Genome-wide association studies of days to flowering and plant height revealed eight and three significant quantitative trait loci (QTL), respectively, with major height QTL at canonical height loci Dw3 and SbHT7.1 . Colocalization of two of eight major flowering time QTL with flowering genes previously described in US germplasm ( Ma6 and SbCN8 ) suggests that photoperiodic flowering in WA sorghum is conditioned by both known and novel genes. This genomic resource provides a foundation for genomics-enabled breeding of climate-resilient varieties in West Africa. AbbreviationsBLUP, best linear unbiased prediction; CVE, cross-validation error; DFLo, days to flowering;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.