Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed arXiv:1211.6616v3 [cs.NI] 4 Apr 2014 2 scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jumpstart and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.
Setting up the future Internet of Things (IoT) networks will require to support more and more communicating devices. We prove that intelligent devices in unlicensed bands can use Multi-Armed Bandit (MAB) learning algorithms to improve resource exploitation. We evaluate the performance of two classical MAB learning algorithms, UCB1 and Thomson Sampling, to handle the decentralized decision-making of Spectrum Access, applied to IoT networks; as well as learning performance with a growing number of intelligent end-devices. We show that using learning algorithms does help to fit more devices in such networks, even when all end-devices are intelligent and are dynamically changing channel. In the studied scenario, stochastic MAB learning provides a up to 16% gain in term of successful transmission probabilities, and has near optimal performance even in non-stationary and non-i.i.d. settings with a majority of intelligent devices.
International audienceAlthough the research on traffic prediction is an established field, most existing works have been carried out on traditional wired broadband networks and rarely shed light on cellular radio access networks (CRANs). However, with the explosively growing demand for radio access, there is an urgent need to design a traffic-aware energy-efficient network architecture. In order to realize such a design, it becomes increasingly important to model the traffic predictability theoretically and discuss the traffic-aware networking practice technically. In light of that perspective, we first exploit entropy theory to analyze the traffic predictability in CRANs and demonstrate the practical prediction performance with the state-of-the-art methods. We then propose a blueprint for a traffic-based software- defined cellular radio access network (SDCRAN) architecture and address the potential applications of predicted traffic knowledge into this envisioned architecture.
Abstract-In this paper, we consider the problem of exploiting spectrum resources for a secondary user (SU) of a wireless communication network. We suggest that Upper Confidence Bound (UCB) algorithms could be useful to design decision making strategies for SUs to exploit intelligently the spectrum resources based on their past observations. The algorithms use an index that provides an optimistic estimation of the availability of the resources to the SU. The suggestion is supported by some experimental results carried out on a specific dynamic spectrum access (DSA) framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.