Setting up the future Internet of Things (IoT) networks will require to support more and more communicating devices. We prove that intelligent devices in unlicensed bands can use Multi-Armed Bandit (MAB) learning algorithms to improve resource exploitation. We evaluate the performance of two classical MAB learning algorithms, UCB1 and Thomson Sampling, to handle the decentralized decision-making of Spectrum Access, applied to IoT networks; as well as learning performance with a growing number of intelligent end-devices. We show that using learning algorithms does help to fit more devices in such networks, even when all end-devices are intelligent and are dynamically changing channel. In the studied scenario, stochastic MAB learning provides a up to 16% gain in term of successful transmission probabilities, and has near optimal performance even in non-stationary and non-i.i.d. settings with a majority of intelligent devices.
Abstract-In this paper, we consider the problem of exploiting spectrum resources for a secondary user (SU) of a wireless communication network. We suggest that Upper Confidence Bound (UCB) algorithms could be useful to design decision making strategies for SUs to exploit intelligently the spectrum resources based on their past observations. The algorithms use an index that provides an optimistic estimation of the availability of the resources to the SU. The suggestion is supported by some experimental results carried out on a specific dynamic spectrum access (DSA) framework.
In this paper, we deal with the problem of opportunistic spectrum access (OSA) in infrastructure-less cognitive networks. Each secondary user (SU) Tx is allowed to select one frequency channel at each transmission trial. We assume that there is no information exchange between SUs, and they have no knowledge of channel quality, availability and other SUs actions, hence, each SU selfishly tries to select the best band to transmit. This particular problem is designed as a multiuser restless Markov multi-armed bandit (MAB) problem, in which multiple SUs collect a priori unknown reward by selecting a channel. The main contribution of the paper is to propose an online learning policy for distributed SUs, that takes into account not only the availability criterion of a band but also a quality metric linked to the interference power from the neighboring cells experienced on the sensed band. We also prove that the policy, named distributed restless QoS-UCB (RQoS-UCB), achieves at most logarithmic order regret, for a single-user in a first time and then for multiuser in a second time. Moreover, studies on the achievable throughput, average bit error rate obtained with the proposed policy are conducted and compared to well-known reinforcement learning algorithms.
This article draws a general retrospective view on the first 10 years of cognitive radio (CR). More specifically, we explore in this article decision making and learning for CR from an equipment perspective. Thus, this article depicts the main decision making problems addressed by the community as general dynamic configuration adaptation (DCA) problems and discuss the suggested solution proposed in the literature to tackle them. Within this framework dynamic spectrum management is briefly introduced as a specific instantiation of DCA problems. We identified, in our analysis study, three dimensions of constrains: the environment's, the equipment's and the user's related constrains. Moreover, we define and use the notion of a priori knowledge, to show that the tackled challenges by the radio community during first 10 years of CR to solve decision making problems have often the same design space, however they differ by the a priori knowledge they assume available. Consequently, we suggest in this article, the "a priori knowledge" as a classification criteria to discriminate the main proposed techniques in the literature to solve configuration adaptation decision making problems. We finally discuss the impact of sensing errors on the decision making process as a prospective analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.