The current study was undertaken to provide solutions to optimize the unsaponifiable antioxidants content of bread. We report a complete description of changes in wheat carotenoids and vitamin E content from grain to bread and highlight the most important processing steps affecting their level in wheat bread. Major carotenoids losses occurred during kneading. A close correlation (r(2) = 0.97; P = 0.05) was found between carotenoid pigment losses and lipoxygenase (LOX) activity, both parameters depending on wheat genotype. The use of wheat species exhibiting high carotenoid contents and low LOX activity was shown to preserve significant carotenoid level in the bread. No relation was found between vitamin E losses during doughmaking and LOX activity. In addition, moderate kneading resulted in higher vitamin E retention in comparison with carotenoids (12% and 66% losses, respectively). It is concluded that carotenoids are more susceptible to oxidation by endogenous lipoxygenase than vitamin E during breadmaking. This study showed that bread nutritional quality, in terms of antioxidant content, could be improved by selecting suitable cereal genotypes, if this potential is preserved by milling and baking processes.
Cereal Chem. 75(1):85-93The effect of mixing has been tested on the extractable activities of lipoxygenase, peroxidase, and catalase from dough after 2, 5, and 20 min of mixing, and 30 min of rest period after 20 min of mixing. Different mixing conditions have been studied including temperature, atmosphere, speed, amount of water added to the dough, buffer solutions between pH 3.6 and 7.5 added to the dough, and different additives (linoleic acid, guaiacol, hydrogen peroxide, ascorbic acid, cysteine, yeast, and sodium chloride). In all the mixing conditions tested, the dough peroxidase activity remains equivalent to the initial flour activity, whereas losses in lipoxygenase and catalase activities largely varied according to mixing conditions. The results show that a self-destruction mechanism as well as physicochemical denaturation are responsible for these losses. Lipoxygenase losses seem mainly associated with the former mechanism, whereas catalase losses are highly increased in acidic conditions (physicochemical denaturation). Therefore, the relative impact of the three oxidoreducing enzymes may be largely modulated by mixing conditions.
Cereal Chem. 75(5):595-601In control dough, endogenous wheat lipase was inactive, because the triacylglycerol (TAG), 1,2-diacylglycerol (DAG 1,2 ), and 1,3-diacylglycerol (DAG 1,3 ) fractions of nonpolar lipids were not affected by mixing. Conversely, the free fatty acid (FFA) and monoacylglycerol (MAG) fractions decreased, mainly due to the oxidation of polyunsaturated fatty acids (PUFA) catalyzed by wheat lipoxygenase. Addition of exogenous lipase to flour (15 lipase units [LU] per gram of dry matter) resulted in substantial modification of nonpolar lipids during dough mixing. Due to the 1,3 specificity of the lipase used in this experiment, the TAG and DAG 1,3 fractions decreased, whereas the MAG and FFA fractions increased. The DAG 1,2 fraction increased at the beginning of mixing and decreased after 40 min of mixing. Moreover, part of the PUFA released by lipase activity was oxidized by wheat lipoxygenase, resulting in major losses of PUFA. Conversely, the net content of the saturated and monounsaturated fatty acids (SMUFA) remained constant, because the free SMUFA content increased primarily at the expense of the esterified forms. For a constant mixing time of 20 min, increasing the amount of lipase added to dough (from 2.5 to 25 LU/g of dry matter) resulted in a linear decrease in the TAG fraction and a linear increase in the SMUFA content in the FFA fraction. At the same time, the PUFA content of the FFA fraction increased only for additions of lipase to flour of >5 LU/g of dry matter, due to partial oxidation by wheat lipoxygenase.
The oxidation of ferulic acid (FA) or 5-O-(trans-feruloyl)-L-arabinose (EFA) by a purified wheat germ peroxidase was followed by UV spectrophotometry and high-performance liquid chromatography using an electrochemical detection. Wheat peroxidase (POD) exhibits a ping-pong bireactant mechanism forming phenoxy radicals more rapidly from FA than from EFA in routine assay conditions. When both the free and the esterified forms of FA are present, the reverse was found. This result could be due to a nonenzymatic cooxidation of FA by the phenoxy radicals of EFA leading to the formation of phenoxy radicals of FA and the EFA regeneration. Addition of ascorbic acid (AA) provokes a delay of FA consumption. AA reduced very rapidly the phenoxy radicals formed by POD back to initial phenol avoiding the formation of ferulate dimers until it was completely oxidized in dehydroascorbic acid. Conversely, cysteine addition slowed but did not delay the FA consumption. The thiol reduced a fraction of the phenoxy radicals produced by wheat POD and was oxidized into cystine, while the other part of phenoxy radicals formed ferulate dimers. These results could be of interest to understand the POD effect on the wheat dough rheological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.