Precision medicine focuses on DNA abnormalities, but not all tumors have tractable genomic alterations. The WINTHER trial () navigated patients to therapy on the basis of fresh biopsy-derived DNA sequencing (arm A; 236 gene panel) or RNA expression (arm B; comparing tumor to normal). The clinical management committee (investigators from five countries) recommended therapies, prioritizing genomic matches; physicians determined the therapy given. Matching scores were calculated post-hoc for each patient, according to drugs received: for DNA, the number of alterations matched divided by the total alteration number; for RNA, expression-matched drug ranks. Overall, 303 patients consented; 107 (35%; 69 in arm A and 38 in arm B) were evaluable for therapy. The median number of previous therapies was three. The most common diagnoses were colon, head and neck, and lung cancers. Among the 107 patients, the rate of stable disease ≥6 months and partial or complete response was 26.2% (arm A: 23.2%; arm B: 31.6% (P=0.37)). The patient proportion with WINTHER versus previous therapy progression-free survival ratio of >1.5 was 22.4%, which did not meet the pre-specified primary end point. Fewer previous therapies, better performance status and higher matching score correlated with longer progression-free survival (all P<0.05, multivariate). Our study shows that genomic and transcriptomic profiling are both useful for improving therapy recommendations and patient outcome, and expands personalized cancer treatment.
Patients with cancers of differing histologies that express certain biomarkers are likely to benefit from treatment with targeted therapies. However, targets can be present in malignancies other than those indicated by a drug's label, and as a result, affected patients will have no access to those potentially useful drugs. To tackle this issue, the French National Cancer Institute developed the AcSé Programme in 2013. This programme is designed to make treatment decisions or recommendations on the basis of the presence of relevant biomarkers for malignancies with no targeted therapies available and also aims to improve safety, and evaluate the efficacy of targeted drugs used outside of their approved indications. Patients across France have access to molecular testing in 28 molecular genetics centres and to targeted therapies within phase II trials provided no other trials exist in which they could reasonably be included. Trials include patients below the age of 18 if safe dosing data are available. As of January 2016, 183 French clinical sites and over 7,000 patients are participating in AcSé led trials. Proof of concept is being demonstrated through trials designed to investigate the effectiveness of crizotinib and vemurafenib in a wide variety of cancers.
The expanding targeted therapy landscape requires combinatorial biomarkers for patient stratification and treatment selection. This requires simultaneous exploration of multiple genes of relevant networks to account for the complexity of mechanisms that govern drug sensitivity and predict clinical outcomes. We present the algorithm, Digital Display Precision Predictor (DDPP), aiming to identify transcriptomic predictors of treatment outcome. For example, 17 and 13 key genes were derived from the literature by their association with MTOR and angiogenesis pathways, respectively, and their expression in tumor versus normal tissues was associated with the progression-free survival (PFS) of patients treated with everolimus or axitinib (respectively) using DDPP. A specific eight-gene set best correlated with PFS in six patients treated with everolimus: AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA, and PIK3CB (r = 0.99, p = 5.67E−05). A two-gene set best correlated with PFS in five patients treated with axitinib: KIT and KITLG (r = 0.99, p = 4.68E−04). Leave-one-out experiments demonstrated significant concordance between observed and DDPP-predicted PFS (r = 0.9, p = 0.015) for patients treated with everolimus. Notwithstanding the small cohort and pending further prospective validation, the prototype of DDPP offers the potential to transform patients’ treatment selection with a tumor- and treatment-agnostic predictor of outcomes (duration of PFS).
Background: The Worldwide Innovative Network (WIN) Consortium has developed the Simplified Interventional Mapping System (SIMS) to better define the cancer molecular milieu based on genomics/transcriptomics from tumor and analogous normal tissue biopsies. SPRING is the first trial to assess a SIMS-based tri-therapy regimen in advanced non-small cell lung cancer (NSCLC). Methods: Patients with advanced NSCLC (no EGFR, ALK, or ROS1 alterations; PD-L1 unrestricted; ≤2 prior therapy lines) received avelumab, axitinib, and palbociclib (3 + 3 dose escalation design).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.