Peptide nucleic acid (PNA) stands as one of the most successful artificial oligonucleotide mimetics.Salient features include the stability of hybridization complexes (either as duplexes or triplexes), metabolic stability, and ease of chemical modifications. These features have enabled important applications such as antisense agents, gene editing, nucleic acid sensing and as a platform to program the assembly of PNA-tagged molecules. Here, we review recent advances in these areas.
In this report, we elaborate on two new concepts to activate arginine-rich cell-penetrating peptides (CPPs). Early on, we have argued that repulsion-driven ion-pairing interactions with anionic lipids account for their ability to move across hydrophobic cell membranes and that hydrophobic anions such as pyrenebutyrate can accelerate this process to kinetically outcompete endosomal capture. The original explanation that the high activity of pyrenebutyrate might originate from ionpair-π interactions between CPP and activator implied that replacement of the π-basic pyrene with polarized push-pull aromatics should afford more powerful CPP activators. To elaborate on this hypothesis, we prepared a small collection of anionic amphiphiles that could recognize cations by ionpair-π interactions. Consistent with theoretical predictions, we find that parallel but not antiparallel ionpair-π interactions afford operational CPP activators in model membranes and cells. The alternative suggestion that the high activity of pyrenebutyrate might originate from self-assembly in membranes was explored with perfluorinated fatty acids. Their fluorophilicity was expected to promote self-assembly in membranes, while their high acidity should prevent charge neutralization in response to self-assembly, i.e., generate repulsion-driven ion-pairing interactions. Consistent with these expectations, we find that perfluorinated fatty acids are powerful CPP activators in HeLa cells but not in model membranes. These findings support parallel ionpair-π interactions and repulsion-driven ion pairing with self-assembled fluorophiles as innovative concepts to activate CPPs. These results also add much corroborative support for counterion-mediated uptake as the productive mode of action of arginine-rich CPPs.
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin−biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin−biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin−biotin biotechnology in cellular uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.