Abstract. Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021-1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global existence theorem for such an approximation and derive as a by-product a necessary and sufficient condition for the so-called problem of moment realizability. Applications of the above result are given in kinetic theory: first in the context of Levermore's approach and second to design generalized BGK models for Maxwellian molecules.
The aim of this article is to construct a BGK-type model for polyatomic gases which gives in the hydrodynamic limit the proper transport coefficient. Its construction relies upon a systematic procedure: minimizing Boltzmann entropy under suitable moments constraints ([20, 9]). The obtained model corresponds to the ellipsoidal statistical model introduced in [2]. We also study the return to equilibrium of its solutions in the homogeneous case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.