Packaging materials are a significant part of our lives due to their daily usage at grocery stores, supermarkets, restaurants, pharmaceuticals, etc. Packaging plays an important role in ensuring that the products are preserved during handling, transporting, and storage. Similarly, it helps to maintain and prolong the shelf life of products. These materials are used for packaging meats, poultry and seafood products, food and beverages, cosmetics, and pharmaceutical products. Several applications of packaging materials have been discussed extensively, with little discussion on their end of life and continuous availability without impacting the environment. This study presents the need for sustainable packaging as a result of growing demands and the environmental impact of packaging materials after use. This study also presents the importance, types, and applications of packaging materials. Based on the findings of this study, sustainable packaging is made possible by using bio-based and recyclable materials. These materials contribute a great deal to protecting and ensuring a sustainable environment.
Excessive MSW production is a growing management problem for cities in developing countries, such as South Africa. This study addresses these challenges with particular focus on the City of Tshwane. A major problem in Tshwane is that all the MSW generated in the city, including garden waste, is currently being landfilled. A waste stream analysis of Tshwane reveals the largest fraction of MSW is organic and biodegradable, and therefore suitable for compost production. The study proposes that Tshwane will have to address composting the biodegradable fraction of the MSW stream. This study attempts to understand the economics of composting practices in Tshwane, whether composting in Tshwane is financially viable. A comparative study, applying the dome aeration technology on a conventional static windrow, was conducted with the objective of investigating and proposing alternative improved composting technologies for green waste. Although the study focused on Tshwane, it can be argued that the findings could be implemented in any other South African municipality, and even implemented in other emerging countries.
Tshwane is presently landfilling all of its municipal solid waste (MSW) with no pre-processing or minimization efforts. This is a result of the available capacity of its existing landfills, thought to be able to satisfy the city's needs for, at most, the next 10 years. It is possible that the authorities will not wake up to the problem before it is too late. This study addresses these challenges. This study first identified and evaluated technologies available in developed countries for processing the various components of the MSW stream, appropriate to local conditions, as an alternative to landfilling, to ensure that these components will be either reused, recycled or rendered harmless to the environment before disposal. Then most appropriate technologies for Tshwane were selected and assembled into an optimal configuration to achieve a zero waste situation in Tshwane within a decade or two. This represents a significant change in MSW management in Tshwane, from total landfill to zero waste to landfill. Although the study focused on Tshwane, it can be argued that the findings can be implemented in any other South African municipality, and even implemented in other emerging countries.
In the external nitrification (EN) biological nutrient removal (BNR) activated sludge (AS) system, the nitrification process is removed from the main BNRAS system to a fixed media system external to the AS system (Hu et al., 2003). The ENBNRAS system provides considerable advantages over the conventional BNRAS system, e.g. reduced bioreactor volumes, secondary settling tank surface area and oxygen demand. Further, the ENBNRAS system provides opportunity for substantial system intensification. The performance and characterization of the ENBNRAS system has been successfully demonstrated at lab-scale (Hu et al., 2000, Sötemann et al., 2002, but has not yet been tested in full-scale implementation. In collaboration between the City of Tshwane Metropolitan Municipality (CTMM) and the University of Cape Town, ENBNR activated sludge is being implemented at fullscale at the Daspoort Waste Water Treatment Works (DWWTW) in Central Pretoria, South Africa. This paper describes the preliminary design of this full-scale plant and initial implementation.
The increasing research endeavors on nanotechnology encompasses a number of disciplines including the aspects of sustainable construction in civil and environmental engineering. Tremendous achievements have been reported on nanotechnology adoption on sustainable construction, but there are so much more to explore than has been achieved. Some of the advancements on the adoption of nanotechnology on sustainable construction, includes the enhancement of the rheology, strength and durability properties of concrete; which has been proved to be hinged on the nanoscopic characteristics of its constituent. Any modification at the nanoscopic level of concrete and its constituent influences its behavior, including its strength and durability characteristics. Hence, it is projected that the performance of concrete and sustainable construction materials in the future would be greatly enhanced by the application of nanotechnology to manipulate the atoms and molecules of these materials and their constituents at the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.