Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega-and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R 2 = 0.041, P corr < 0.001) and cingulum (right: R 2 = 0.041, left: R 2 = 0.040, P corr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Spatial navigation and orientation are emerging as promising markers for altered cognition in prodromal Alzheimer’s disease, and even in cognitively normal individuals at risk for Alzheimer’s disease. The different APOE gene alleles confer various degrees of risk. The APOE2 allele is considered protective, APOE3 is seen as control, while APOE4 carriage is the major known genetic risk for Alzheimer’s disease. We have used mouse models carrying the three humanized APOE alleles and tested them in a spatial memory task in the Morris water maze. We introduce a new metric, the absolute winding number, to characterize the spatial search strategy, through the shape of the swim path. We show that this metric is robust to noise, and works for small group samples. Moreover, the absolute winding number better differentiated APOE3 carriers, through their straighter swim paths relative to both APOE2 and APOE4 genotypes. Finally, this novel metric supported increased vulnerability in APOE4 females. We hypothesized differences in spatial memory and navigation strategies are linked to differences in brain networks, and showed that different genotypes have different reliance on the hippocampal and caudate putamen circuits, pointing to a role for white matter connections. Moreover, differences were most pronounced in females. This departure from a hippocampal centric to a brain network approach may open avenues for identifying regions linked to increased risk for Alzheimer’s disease, before overt disease manifestation. Further exploration of novel biomarkers based on spatial navigation strategies may enlarge the windows of opportunity for interventions. The proposed framework will be significant in dissecting vulnerable circuits associated with cognitive changes in prodromal Alzheimer’s disease.
Lithium is the first-line mood stabilizer for the treatment of patients with bipolar disorder. However, its mechanisms of action and transport across the blood-brain barrier remain poorly understood. The contribution of lithium-7 magnetic resonance imaging ( Li MRI) to investigate brain lithium distribution remains limited because of the modest sensitivity of the lithium nucleus and the expected low brain concentrations in humans and animal models. Therefore, we decided to image lithium distribution in the rat brain ex vivo using a turbo-spin-echo imaging sequence at 17.2 T. The estimation of lithium concentrations was performed using a phantom replacement approach accounting for B inhomogeneities and differential T and T weighting. Our MRI-derived lithium concentrations were validated by comparison with inductively coupled plasma-mass spectrometry (ICP-MS) measurements ([Li] = 1.18[Li] , R = 0.95). Overall, a sensitivity of 0.03 mmol/L was achieved for a spatial resolution of 16 μL. Lithium distribution was uneven throughout the brain (normalized lithium content ranged from 0.4 to 1.4) and was mostly symmetrical, with consistently lower concentrations in the metencephalon (cerebellum and brainstem) and higher concentrations in the cortex. Interestingly, low lithium concentrations were also observed close to the lateral ventricles. The average brain-to-plasma lithium ratio was 0.34 ± 0.04, ranging from 0.29 to 0.39. Brain lithium concentrations were reasonably correlated with plasma lithium concentrations, with Pearson correlation factors ranging from 0.63 to 0.90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.