The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Seaweeds are gaining a considerable amount of attention for their antioxidant and antibacterial properties. Caulerpa racemosa and Caulerpa lentillifera, also known as ‘sea grapes’, are green seaweeds commonly found in different parts of the world, but the antioxidant and antibacterial potentials of Malaysian C. racemosa and C. lentillifera have not been thoroughly explored. In this study, crude extracts of the seaweeds were prepared using chloroform, methanol, and water. Total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by in vitro antioxidant activity determination using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Antibacterial activities of these extracts were tested against Methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Liquid chromatography–mass spectrometry (LCMS) analysis was then used to determine the possible compounds present in the extract with the most potent antioxidant and antibacterial activity. Results showed that C. racemosa chloroform extract had the highest TPC (13.41 ± 0.86 mg GAE/g), antioxidant effect (EC50 at 0.65 ± 0.03 mg/mL), and the strongest antibacterial effect (97.7 ± 0.30%) against MRSA. LCMS analysis proposed that the chloroform extracts of C. racemosa are mainly polyunsaturated and monounsaturated fatty acids, terpenes, and alkaloids. In conclusion, C. racemosa can be a great source of novel antioxidant and antibacterial agents, but isolation and purification of the bioactive compounds are needed to study their mechanism of action.
The unique properties of zinc oxide nanoparticles (ZnO-NPs) produced using plant extract make them attractive for use in medical as well as industrial applications, and it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the zinc ions to ZnO-NPs during synthesis with natural plant extracts. Here, the biosynthesis of ZnO-NPs using Punica granatum (P. granatum) fruit peels extract was investigated as the reducing and stabilizing agent. The P. granatum/ZnO-NPs with spherical and hexagonal shapes were biosynthesized at different annealing temperatures. The X-ray diffraction analysis confirmed the synthesis of highly pure ZnO-NPs with increasing crystallinity in higher annealing temperatures. The ZnO-NPs displayed characteristic absorption peaks between 370 and 378 nm in the UV evis spectra. Transmission electron microscopy (TEM) imaging showed the formation of mostly spherical and hexagonal-shaped ZnO-NPs in the mean size of 32.98 nm and 81.84 nm at 600 C and 700 C respectively. According to FTIR spectrum, strong absorption bands in the range of 462e487 cm À1 corresponding to ZneO bond stretching can be seen. Antibacterial activities of P. granatum/ZnO-NPs against Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were investigated and compared. Results obtained show that smaller-sized P. granatum/ZnO-NPs are more effective in inhibiting growth of both bacteria. In addition, cytotoxicity assays were performed for P. granatum/ZnO-NPs against human colon normal and cancerous cells. P. granatum/ZnO-NPs exhibited similar killing activities of both cell lines at the concentration of !31.25 mg/mL. The biosynthesized ZnO-NPs could offer potential applications in biomedical field.
In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
BackgroundThe Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting.ResultsOf 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of bacterial species and human epithelial cells and its increased abundance was associated with biofilm formation.ConclusionThis investigation identified a number of proteins that were significantly altered by F. nucleatum in response to alkaline conditions similar to those reported in diseased periodontal pockets. The results provide insight into the adaptive mechanisms used by F. nucleatum biofilms in response to pH increase in the host environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.