Adolescents demonstrate increasing mastery of motor actions with age. One prevailing hypothesis is that maturation of the somatosensory system during adolescence contributes to the improved motor control. However, limited efforts have been made to determine if somatosensory cortical processing is different in adolescents during movement. In this study, we used magnetoencephalographic brain imaging to begin addressing this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents (Age = 14.8 ± 2.5 yrs.) and adults (Age = 36.8 ± 5.0 yrs.) produced an isometric ankle plantarflexion force, or sat with no motor activity. Our results showed strong somatosensory cortical oscillations for both conditions in the alpha-beta (8–30 Hz) and gamma (38–80 Hz) ranges that occurred immediately after the stimulation (0–125 ms), and a beta (18–26 Hz) oscillatory response shortly thereafter (300–400 ms). Compared with the passive condition, all of these frequency specific cortical oscillations were attenuated while producing the ankle force. The attenuation of the alpha-beta response was greater in adolescents, while the adults had a greater attenuation of the beta response. These results imply that altered attenuation of the somatosensory cortical oscillations might be central to the under-developed somatosensory processing and motor performance characteristics in adolescents.
Cortical visual processing in visual MT/V5 is necessary for tracking movement and performing reliable visuomotor transformations. Although the role of this cortical area is well recognized, the activity of the visual MT/V5 cortical area in children with cerebral palsy (CP) has not been examined nor has its potential role in the atypical motor actions of these children been considered. This study used magnetoencephalography to image the neural activity in the motion-sensitive MT/V5 cortices of typically developing (TD) children (
n
= 21; mean age 14 yrs. ± 2, 12 males) and children with CP (n = 21; mean age 16 yrs. ± 4, 13 males) as they viewed a horizontally moving stimulus. Behavioral measures of visual perception were additionally assessed by having the participants press a button when the visual stimulus changed to moving in vertical direction. Our results showed that the horizontal movement of the visual stimulus evoked changes in the strength of the theta-alpha (5–10 Hz) and alpha-beta (8–20 Hz) oscillations in the visual MT/V5 area of all participants. Compared with the TD children, the children with CP had weaker alpha-beta oscillations in the visual MT/V5 cortices. In addition, the children with CP took longer to perceive a directional change of the visual stimulus and made more errors in detecting the change. Lastly, weaker alpha-beta oscillations were correlated with slower detection of the change in motion direction and less accuracy in identifying the change. This study shows that the uncharacteristic neural oscillations in the visual MT/V5 cortical area may partially account for the abnormal perceptions and motor decisions seen in children with CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.