Waste management is a vital environmental issue in the world today. Municipal solid wastes (MSWs) are discarded in huge quantities on a daily basis and need to be well controlled. Incineration is a common method for reducing the volume of these wastes, yet it produces ashes that require further assessment. Municipal solid waste incineration bottom ash (MSWI-BA) is the bulk byproduct of the incineration process and has the potential to be used in the construction sector. This paper offers a review of the use of MSWI-BA as aggregates in cementitious materials. With the growing demand of aggregates in cementitious materials, MSWI-BA is considered for use as a partial or full alternative. Although the physical and chemical properties of MSWI-BA are different than those of natural aggregates (NA) in terms of water absorption, density, and fineness, they can be treated by various methods to ensure suitable quality for construction purposes. These treatment methods are classified into thermal treatment, solidification and stabilization, and separation processes, where this review focuses on the techniques that reduce deficiencies limiting the use of MSWI-BA as aggregates in different ways. When replacing NA in cementitious materials, MSWI-BA causes a decrease in workability, density, and strength. Moreover, they cause an increase in water absorption, air porosity, and drying shrinkage. In general, the practicality of using MSWI-BA in cementitious materials is mainly influenced by its treatment method and the replacement level, and it is concluded that further research, especially on durability, is required before MSWI-BA can be efficiently used in the production of sustainable cementitious materials.
The performance of reinforced concrete beams in the presence of cathode-ray tube (CRT) glass waste is examined. Four concrete mixes containing 0%, 10%, 20%, and 30% CRT glass waste as partial replacement of sand were prepared. The compressive and flexural strength as well as the modulus of elasticity of concrete were determined. Reinforced concrete beams with varying amounts of CRT glass were prepared and the three-point bending test was conducted. The load-deflection curve as well as the strain distribution along the depth of the beams were determined. Concrete containing CRT glass showed an increase in compressive strength, flexural strength, and modulus of elasticity especially at 10% replacement level. The load carrying capacity of reinforced concrete beam is higher when 10% of sand is replaced with CRT glass compared to the control beam and the beams with 20% and 30% CRT glass substitution. The failure mode of the reinforced concrete beams is flexural failure, and the failure pattern is similar for all beams. Strain distribution showed a better ductility at control beam where the deflection was higher than the other beams at the same load. Numerical analysis was conducted, and comparison was made with the experimental results. The comparison showed the accuracy of the software used, where the results of maximum load capacity and maximum deflection were very similar, and the difference did not exceed 5%. In addition, the tensile damage generated by the numerical analysis was very similar to that obtained by the experimental study.
Among many alternatives to replace sand in cement-based materials, cathode-ray tube (CRT) glass emerges as a suitable replacement for many reasons. This paper provides a state-of-the-art review on the use of cathode-ray tube (CRT) glass waste in cement-based concrete and mortar in accordance with PRISMA guidelines. The new aspects of the research are the literature coverage up to 2021 which would make it distinct from other articles. This review would act as a catalyst to use CRT glass waste in concrete mixtures. A total of 61 papers from literature were analyzed with emphasis on the fresh, mechanical, and durability performance of cement-based materials containing CRT glass waste as fine aggregates. The analysis revealed that the majority of the studies agreed that replacing sand with CRT glass waste increased the consistency where the low permeability of the CRT glass caused this effect. Strength of cement-based materials, on the other hand, decreased due to the weaker bond between the cement paste and the aggregates. The low water absorption of the CRT glass defined its effect on the durability properties of cement-based materials, such as drying shrinkage and water absorption capacity, leading to an improved performance. In addition, CRT glass waste activated the alkali-silica reaction in cement-based materials causing undesirable expansion. Additionally, several investigations proposed solutions to mitigate the lead leaching associated with the lead content found in the CRT glass. In general, it was assessed that CRT glass waste could be a valid component in the production of sustainable cement-based materials, especially for radiation shielding applications. The recommendations for future research are also suggested.
This study conducts a scientometric review on the use of geopolymer mortar and composites in different construction applications. It aims to analyze the findings of past research and reveal the research constituents, development trends, and knowledge gaps. The Scopus database was employed to retrieve the relevant publications, while Bibliometrix was used to conduct the statistical analyses. Results revealed a steady and gradual increase in the number of publications after 2013, as the annual growth rate increased from 23.9% to 45.2% between the timeframes 2003–2013 and 2014–2022, respectively. The analysis highlighted that many authors collaborated on different construction applications of geopolymers regardless of geographic location. Meanwhile, Construction and Building Materials, China, and Universiti Malaysia Perlis were found to be the predominant journal, country, and institution, respectively. The scientometric analysis showed that the most frequently investigated applications for geopolymer mortars and composites were fire resistance, corrosion protection, and repair. Research gaps highlighted that other applications are not as well investigated despite the promising performance of the geopolymer composites, including 3D printing, heavy metals absorption, environmental protection, and underwater applications. Future research is required to assess the use of other alumina and silica-rich binders in geopolymers while also exploring their lifecycle assessment and economic impact.
This paper investigates the influence of the type of fine aggregates on the properties of slag-fly ash blended geopolymer mortar. Twelve mixes were prepared with two types of sand: desert dune sand (DS) and crushed dolomitic limestone sand (CS). Different alkaline activator solution-to-binder (0.50, 0.60, and 0.65) and binder-to-sand ratios (1:2, 1:3, and 1:4) were considered to analyze their effect on the performance of the geopolymer mortar. The properties under investigation included the amount of additional water needed to maintain a flow of 150 ± 2 mm and the 7-and 14-day compressive strengths. Experimental test results showed that an increase in fine aggregates content resulted in a higher additional water demand, regardless of the type of sand used. As a result, the mortar compressive strength decreased by up to 29% compared to mixes with the lowest binder-to-sand ratios (1:2 for DS mixes and 1:3 for CS mixes). An increase in the alkaline activator solution-to-binder ratio reduced the additional water needed to satisfy the target flowability but increased the overall liquid-to-binder ratio. Meanwhile, for optimum compressive strength, DS-based mixes comprised B:S and AAS/B ratios of 1:2 and 0.60, respectively, while those of CS-based mixes were 1:3 and 0.65, respectively. Compared to mixes made with CS, those incorporating DS required the addition of more water to maintain the flowability and experienced up to 81% loss in compressive strength; still, DS-based mixes achieved 14-day compressive strengths exceeding 28 MPa. The experimental findings advocate the use of DS as fine aggregates in the production of slag-fly ash blended geopolymer mortar to be utilized in various construction applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.