A conceptually laminar mechanism of extremely fast flame acceleration in obstructed channels, identified by Bychkov et al. [“Physical mechanism of ultrafast flame acceleration,” Phys. Rev. Lett. 101, 164501 (2008)], is further studied by means of analytical endeavors and computational simulations of compressible hydrodynamic and combustion equations. Specifically, it is shown how the obstacles length, distance between the obstacles, channel width, and thermal boundary conditions at the walls modify flame propagation through a comb-shaped array of parallel thin obstacles. Adiabatic and isothermal (cold and preheated) side walls are considered, obtaining minor difference between these cases, which opposes the unobstructed channel case, where adiabatic and isothermal walls provide qualitatively different regimes of flame propagation. Variations of the obstructed channel width also provide a minor influence on flame propagation, justifying a scale-invariant nature of this acceleration mechanism. In contrast, the spacing between obstacles has a significant role, although it is weaker than that of the blockage ratio (defined as the fraction of the channel blocked by obstacles), which is the key parameter of the problem. Evolution of the burning velocity and the dependence of the flame acceleration rate on the blockage ratio are quantified. The critical blockage ratio, providing the limitations for the acceleration mechanism in channels with comb-shaped obstacles array, is found analytically and numerically, with good agreement between both approaches. Additionally, this comb-shaped obstacles-driven acceleration is compared to finger flame acceleration and to that produced by wall friction.
The advent of new drug therapies has resulted in a need for drug delivery that can deal with increased drug concentration and viscosities. Needle-free liquid jet injection has shown great potential as a platform for administering some of these revolutionary therapies. This investigation explores the detonative combustion phenomenon in gases as a simple and efficient means of powering needle-free liquid jet injection systems. A preliminary, large-scale prototype injector was designed and developed. In contrast with the widely used air-powered and electrical driven needle-free injectors, the proposed detonation-driven mechanism provides equivalent liquid jet evolution and performance but can efficiently provide a controllable power source an order magnitude higher in strength by varying combustible mixtures and initial conditions. The simplicity and power output associated with this concept aid in improving current needle-free liquid injector design, especially for delivery of high volume, high viscosity drugs, including monoclonal antibodies, which target precise locations in skin tissue.
While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [Physical Review Letters 101 (2008) Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet-flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which was observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modelling and the present theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.