Microfaunal assemblages of benthic foraminifera, ostracods, and tintinnids from two marine sediment cores retrieved from the Herschel Basin of the Canadian Beaufort Sea shelf document relationships with environmental parameters such as salinity, sea-ice cover, and turbulence. Cores YC18-HB-GC01 and PG2303-1 were collected at 18 and 32 m water depth, respectively. At these sites, sediment accumulation rates range between 0.6 and 1.7 cm yr–1 allowing a near-annual temporal resolution over the last 50 years. Multivariate analyses indicate that benthic foraminiferal assemblages respond primarily to food supply. Dissimilarities between the microfaunal assemblages of the two cores are mainly the result of bottom water salinity levels linked to water depth. High abundance of the benthic foraminiferal species Elphidium clavatum and occurrences of Elphidium bartletti point to varying, but relatively low, salinities at the shallow core site YC18-HB-GC01, which may be affected by variations in the summer halocline depth. Higher species diversity and more abundant Cassidulina reniforme and Stainforthia feylingi characterize the deeper core PG2303-1, which might reflect more stable conditions and higher bottom-water salinities throughout the studied time interval. The most important microfaunal shift of the last 50 years, observed in the shallower longer core YC18-HB-GC01, occurred at the turn of the 21st century. Prior to ∼2000 CE, the presence of Islandiella norcrossi indicates more stable and saline conditions. Since ∼2000 CE, increased abundances of Haynesina nivea and of the ciliate Tintinnopsis fimbriata suggest decreased salinity and increased turbidity. An increased abundance of Eoeponidella pulchella after ∼2000 CE suggests a concurrent increase in productivity in the last two decades. This shift is nearly synchronous with a decrease in mean summer sea-ice concentration, which can play an important role in bottom water stability on the shelf. Easterly winds can induce a reduction in the sea-ice cover, but also foster a westward spreading of the Mackenzie River plume and the upwelling of nutrient-rich Pacific waters onto the shelf. Both factors would explain the increased freshening and productivity of the Herschel Basin. The last two decades were also marked by a decrease in ostracod abundance that may relate to higher water turbidity. This study shows that combining information from benthic foraminifera, ostracods, and tintinnids provides a comprehensive insight into recent hydrographic/climatic changes in nearshore Arctic habitats, where productivity is critical for the food security of local communities.
<p>The shallow (~ 50 m deep) Bering Strait, which is the unique gateway linking the Pacific Ocean to the Arctic Ocean, deserves special attention as sea-level changes modify considerably the exchanges between the two oceans. Under high sea level, poleward heat transfer and freshwater fluxes from the Pacific impact the Arctic freshwater budget and sea ice distribution. Furthermore, sea level determines the status of the Arctic shelves, submerged or not, which plays a role in sea-ice production, as well as in the latent heat from Atlantic waters flowing northward through Fram Strait and the Barents Sea. Hence, high sea levels result in the connection of the Arctic basin with the Pacific, which modifies the Arctic freshwater and heat budgets and leads to the submergence of shelves, thus the potential development of sea-ice factories. The impacts of sea-level on the Arctic Ocean and subarctic seas are not easily reconstructed from sedimentary records, but radiocarbon-based chronologies and proxy-data covering the present interglacial provide useful information. For example, micropaleontological and geochemical records from the Chukchi Sea show progressive warming in surface water accompanying the increase of Pacific flux during the Holocene, until sea-level reached its present-day limit at ~ 4 ka BP. This contrasts with a trend towards perennial sea-ice cover in the southeastern Arctic and with changes at the eastern gateway of the Fram Strait, where cooling is recorded from early to late Holocene. Hence, we hypothesize that increased freshwater inflow from the Pacific into the Arctic together with enhanced sea-ice formation rates, both linked to sea-level rise, may have played a role in the general cooling trend culminating during the late Holocene.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.