In neurosecretory cells, secretory vesicles (SVs) undergo Ca 2 þ -dependent fusion with the plasma membrane to release neurotransmitters. How SVs cross the dense mesh of the cortical actin network to reach the plasma membrane remains unclear. Here we reveal that, in bovine chromaffin cells, SVs embedded in the cortical actin network undergo a highly synchronized transition towards the plasma membrane and Munc18-1-dependent docking in response to secretagogues. This movement coincides with a translocation of the cortical actin network in the same direction. Both effects are abolished by the knockdown or the pharmacological inhibition of myosin II, suggesting changes in actomyosin-generated forces across the cell cortex. Indeed, we report a reduction in cortical actin network tension elicited on secretagogue stimulation that is sensitive to myosin II inhibition. We reveal that the cortical actin network acts as a 'casting net' that undergoes activity-dependent relaxation, thereby driving tethered SVs towards the plasma membrane where they undergo Munc18-1-dependent docking.
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
Adipocytes and muscle cells play a major role in blood glucose homeostasis. This is dependent upon the expression of Glut4, an insulin-responsive facilitative glucose transporter. Glut4 is localised to specialised intracellular vesicles that fuse with the plasma membrane in response to insulin stimulation. The insulin-induced translocation of Glut4 to the cell surface is essential for the maintenance of optimal blood glucose levels, and defects in this system are associated with insulin resistance and type II diabetes. Therefore, a major focus of recent research has been to identify and characterise proteins that regulate Glut4 translocation. Cysteine-string protein (Csp) is a secretory vesicle protein that functions in presynaptic neurotransmission and also in regulated exocytosis from non-neuronal cells. We show that Csp1 is expressed in 3T3-L1 adipocytes and that cellular levels of this protein are increased following cell differentiation. Combined fractionation and immunofluorescence analyses reveal that Csp1 is not a component of intracellular Glut4-storage vesicles (GSVs), but is associated with the adipocyte plasma membrane. This association is stable, and not affected by either insulin stimulation or chemical depalmitoylation of Csp1. We also demonstrate that Csp1 interacts with the t-SNARE syntaxin 4. As syntaxin 4 is an important mediator of insulin-stimulated GSV fusion with the plasma membrane, this suggests that Csp1 may play a regulatory role in this process. Syntaxin 4 interacts specifically with Csp1, but not with Csp2. In contrast, syntaxin 1A binds to both Csp isoforms, and actually exhibits a higher affinity for the Csp2 protein. The results described raise a number of interesting questions concerning the intracellular targeting of Csp in different cell types, and suggest that the composition and synthesis of GSVs may be different from synaptic and other secretory vesicles. In addition, the interaction of Csp1 with syntaxin 4 suggests that this Csp isoform may play a role in insulin-stimulated fusion of GSVs with the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.