Structure-activity relationships for a series of 3-phenoxy-1,4-diarylazetidin-2-ones were investigated leading to the discovery of a number of potent antiproliferative compounds, includingtrans -4-(3-hydroxy-4-methoxyphenyl)-3-phenoxy-1-(3,4,5-trimethoxyphenyl) 3
Twelve novel β-lactams were synthesized and their antiproliferative effects and binding affinity for the predominant isoforms of the estrogen receptor (ER), ERα and ERβ, were determined. β-Lactams 23 and 26 had the strongest binding affinities for ERα (IC50 values: 40 and 8 nM, respectively) and ERβ (IC50 values: 19 and 15 nM). β-Lactam 26 was the most potent in antiproliferative assays using MCF-7 breast cancer cells, and further biochemical analysis showed that it caused accumulation of cells in G2/M phase (mitotic blockade) and depolymerization of tubulin in MCF-7 cells. Compound 26 also induced apoptosis and downregulation of the expression of pro-survival proteins Bcl-2 and Mcl-1. Computational modeling predicted binding preferences for the dual ER/tubulin ligand 26. This series is an important addition to the known pool of ER antagonists and β-lactam 26 is the first reported compound that has dual-targeting properties for both the ER and tubulin.
The C-KIT receptor tyrosine kinase is constitutively activated in the majority of gastrointestinal stromal tumours (GIST). Imatinib (IM) a selective inhibitor of C-KIT, is indicated for the treatment of KIT-positive unresectable and/or metastatic GIST, and has tripled the survival time of patients with metastatic GIST. However, the majority of patients develop IM-resistance and progress. Although IM elicits strong antiproliferative effects, it fails to induce sufficient levels of apoptosis; acquired IM-resistance and disease recurrence remain an issue, a more effective drug treatment is greatly needed. We examined the effect of a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-15 in combination with IM on GIST cells. PBOX-15 decreased viability and in combination with IM synergistically enhanced apoptosis in both IM-sensitive and IM-resistant GIST cells, decreased the anti-apoptotic protein Mcl-1, and enhanced activation of pro-caspase-3 and PARP cleavage. The combination treatment also led to an enhanced inhibition of C-KIT-phosphorylation and inactivation of C-KIT-dependent signalling in comparison to either drug alone; CDC37, a key regulator of C-KIT in GIST was also dramatically decreased. Furthermore, PBOX-15 reduced CKII expression, an enzyme which regulates the expression of CDC37. In conclusion, our findings indicate the potential of PBOX-15 to improve the apoptotic response of IM in GIST cells and provide a more effective treatment option for GIST patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.