Several prostaglandins [prostaglandin (PG) A2, -B2, -D2, -E2, -F2 alpha, and -I2 and carbaprostacyclin] and the thromboxane analogue U-46619 were analyzed for the ability to induce hypertrophy of rat neonatal cardiac ventricular myocytes. Myocyte hypertrophy was induced specifically by PGF2 alpha. Myocytes exposed to this prostanoid in culture increased in size and protein content. The contractile fibrils within the cells became organized into parallel arrays, and the cells tended to cluster and beat spontaneously. PGF2 alpha also induced the expression of c-fos, atrial natriuretic factor (ANF), and alpha-skeletal actin in these cells. The effects of PGF2 alpha were compared with several known cardiac myocyte hypertrophy factors (phenylephrine, endothelin-1, leukemia inhibitory factor, cardiotrophin-1, and angiotensin II). PGF2 alpha was found to be intermediate in potency among the factors but induced a level of ANF production that was approximately 10-fold higher than any of the other effectors. Responsiveness to PGF2 alpha was not limited to neonatal cardiocytes. Ventricular myocytes isolated from adult rats also responded specifically to PGF2 alpha with a morphological change similar to that observed with phenylephrine and by producing ANF. In rats, chronic administration of fluprostenol, a potent agonist analogue of PGF2 alpha, resulted in a dose-dependent increase in heart weight- and ventricular weight-to-body weight ratios. The amount of PGF2 alpha extractable from the hearts of rats with cardiac hypertrophy induced by myocardial infarction was also found to be greater than that in sham-operated control rats. These results indicate that PGF2 alpha may play an important role in inducing cardiac hypertrophy.
Cardiac fibroblasts in culture produce factor(s) that induce hypertrophy of neonatal rat ventricular myocytes in vitro. As in vivo, the myocyte hypertrophy response in culture is characterized by an increase in cell size and contractile protein content, and by the activation of embryonic genes, including the gene for atrial natriuretic peptide. The purpose of this study was to identify the factor(s) produced by fibroblasts that induce myocyte hypertrophy. The fibroblast hypertrophy activity was inhibited using a combination of the endothelin A receptor blocker BQ-123 and an antibody to leukemia inhibitory factor. The individual antagonists each caused a partial inhibition. The mRNAs for both leukemia inhibitory factor and endothelin were detected by RT-PCR analysis and the concentration of both proteins was determined to be approximately 200 pmol/L in the conditioned medium using immunoassays. Purified leukemia inhibitory factor and endothelin each induced distinctive morphological changes in the myocytes. Their combination generated a different morphology similar to that induced by fibroblast conditioned medium. Each factor also induced atrial natriuretic peptide production, but both were required for the myocytes to produce the levels measured after exposure to fibroblast conditioned medium. These results show that hypertrophy activity produced by cardiac fibroblasts in culture is a result of leukemia inhibitory factor and endothelin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.