Recent studies on T follicular helper (Tfh) cells have significantly advanced our understanding of T cell-dependent B cell responses. However, little is known about the early stage of Tfh cell commitment by dendritic cells (DCs), particularly by the conventional CD8α(+) and CD8α(-) DC subsets. We show that CD8α(-) DCs localized at the interfollicular zone play a pivotal role in the induction of antigen-specific Tfh cells by upregulating the expression of Icosl and Ox40l through the non-canonical NF-κB signaling pathway. Tfh cells induced by CD8α(-) DCs function as true B cell helpers, resulting in significantly increased humoral immune responses against various human pathogenic antigens, including Yersinia pestis LcrV, HIV Gag, and hepatitis B surface antigen. Our findings uncover a mechanistic role of CD8α(-) DCs in the initiation of Tfh cell differentiation and thereby provide a rationale for investigating CD8α(-) DCs in enhancing antigen-specific humoral immune responses for improving vaccines and therapeutics.
T follicular helper (Tfh) cells, a true B cell helper, have a critical role in enhancing humoral immune responses. However, the initial differentiation of Tfh cells by dendritic cells (DCs), the most potent antigen presenting cells, has not been clearly understood, particularly in the knowledge of the two major conventional dendritic cell subsets, CD8α(+) DCs or CD8α(-) DCs. Here we demonstrated that the localization of CD8α(-) DCs in the marginal zone (MZ) bridging channels is closely associated with the induction of CXCR5(+)CCR7(low) Tfh cells. We also showed that the major source of IL-6 for inducing Tfh cells is provided from the activated CD4(+) T cells induced by CD8α(-) DCs, and IL-6 directly secreted from the DC subsets seems minor. CD8α(-) DCs were superior in inducing functional Tfh cells over other antigen presenting cells including B cells. We here observed the unknown intrinsic features of the DC subsets, suggesting the potential of utilizing the CD8α(-) DC subset as therapeutic vaccine for the regulation of humoral immune responses.
The possibility of functional roles played by platelets in close alliance with cancer cells has inspired the design of new biomimetic systems that exploit platelet-cancer cell interactions. Here, the role of platelets in cancer diagnostics is leveraged to design a microfluidic platform capable of detecting cancer-derived extracellular vesicles (EVs) from ultrasmall volumes (1 µL) of human plasma samples. Further, the captured EVs are counted by direct optical coding of plasmonic nanoprobes modified with EV-specific antibodies. Owing to the inherent properties of platelets for multifaceted interaction with cancer cells, the microfluidic chip equipped with a biologically interfaced platelet membrane-cloaked surface (denoted "PLT-Chip") can capture a significantly higher number of EVs from multiple types of cancer cell lines (prostate, lung, bladder, and breast) than the normal cell-derived EVs. Furthermore, this chip allows the monitoring of the growth of tumor spheroids (100 µm-2.5 mm) and clearly distinguishes the plasma of cancer patients from that of normal healthy controls. This robust, multifaceted, and cancer-specific binding affinity, coupled with excellent biocompatibility, is a unique feature of platelet membrane-cloaked surfaces, which therefore represent promising alternatives to antibodies for application in EVs-based cancer theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.