ObjectiveThis experiment was carried out to determine the effects of different creep feed types on suckling performance and further adjustments to solid feed after weaning.MethodsA total of 24 multiparous sows and their litters were allotted to one of three treatment groups: i) provided highly digestible creep feed (Creep), ii) provided a pig weaning diet (Weaner), and iii) provided sow feed (Sow) as creep feed until weaning. After weaning, a total of 96 piglets were selected for evaluation of post-weaning performance.ResultsFor pre-weaning performance, the Creep treatment led to a significantly higher feed intake from 14 to 28 d (p<0.05) and higher body weight gain from 21 to 28 d than piglets that were provided other diets. However, after weaning, the Weaner treatment yielded a significantly higher feed intake and average daily gain than other treatments from 0 to 14 d after weaning (p<0.05); Creep treatment tended to generate lower villus heights in the duodenum than the other treatments (p = 0.07).ConclusionHighly digestible creep feed improved pre-weaning performance, but feed familiarity and grain-based creep feed improved post-weaning performance.
Many types of feed ingredients are used to provide energy and nutrients to meet the nutritional requirements of swine. However, the analytical methods and measures used to determine the true nutritional and physiological (“nutri-physiological”) value of feed ingredients affect the accuracy of predicting and achieving desired animal responses. Some chemical characteristics of feed ingredients are detrimental to pig health and performance, while functional components in other ingredients provide beneficial health effects beyond their nutritional value when included in complete swine diets. Traditional analytical procedures and measures are useful for determining energy and nutrient digestibility of feed ingredients, but do not adequately assess their true physiological or biological value. Prediction equations, along with ex vivo and in vitro methods, provide some benefits for assessing the nutri-physiological value of feed ingredients compared with in vivo determinations, but they also have some limitations. Determining the digestion kinetics of the different chemical components of feed ingredients, understanding how circadian rhythms affect feeding behavior and the gastrointestinal microbiome of pigs, and accounting for the functional properties of many feed ingredients in diet formulation are the emerging innovations that will facilitate improvements in precision swine nutrition and environmental sustainability in global pork-production systems.
This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE) bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2%) of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308) were allotted by randomized complete block (RCB) design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR) at terminal period among treatments (p>0.05). Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05). In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05), and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05). Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics in broilers diet.
An experiment was conducted to evaluate apparent (AID) and standardized (SID) ileal digestibilities of crude protein (CP) and amino acids (AA) with 6 soybean products in weaning pigs. A total of 14 weaning barrows with an initial body weight of 6.54 ± 0.34 kg were fitted with T-cannula at the distal ileum and allotted to 7 diets containing various soybean products. The soybean products used in the experiment were conventional soybean meal (CSBM), SBM fermented by Aspergillus oryzae GB-107 (FSBMA), SBM fermented by Bacillus subtilis PP6 (FSBMB), UV sterilized SBM fermented by Bacillus subtilis PP6 (UVFSBMB), SBM containing Bacillus subtilis PP6 (PSBM), and soy protein concentrate (SPC). Six corn-based diets were used and each of soybean products was added. All diets contained 5.0 g/kg of chromic oxide as an indigestible indicator and an N-free diet was used to measure basal endogenous losses of CP and AAs. Ileal CP digestibility did not differ by different soybean products. However, SIDs of Ile, Phe and Val were improved in pigs fed the FSBMB, UVFSBMB and SPC diets and the pigs fed the FSBMA diet showed higher SIDs of Phe and Val compared with those fed the CSBM diet (P < 0.05). The FSBMB diet had higher SIDs in most AAs compared with the FSBMA diet (P < 0.05), and higher SIDs of Lys, Ala, Pro, Ser, and Tyr compared with PSBM diet (P < 0.05). However, there was no response of UV-sterilization on the FSBMB in the SIDs of AAs. These results suggest that SIDs of AAs could be improved by the supplementation of fermented soybean products in the diet for weaning pigs but fermentation with Bacillus subtilis is more efficient in improving ileal AA digestibility than that with Aspergillus oryzae. Furthermore, probiotics supplementation in the CSBM and UV-sterilization of the FSBMB had no effects on chemical composition and ileal AA digestibility.
The objective of this experiment was to determine preweaning survival of pigs when sows were supplemented with 3 dietary levels of zinc (Zn) in late gestation. Gilts and sows (n = 339) were assigned to 1 of 3 dietary treatments based on parity. Dietary treatments were 1) Control—sows fed a corn–soybean meal-based diet containing 125 ppm total supplemental Zn supplied by ZnSO4 (75 ppm Zn) and AvailaZn (50 ppm Zn, CON); 2) Intermediate—as Control + 240 ppm supplemental Zn as ZnSO4 (INT); and 3) High—as Control + 470 ppm supplemental Zn as ZnSO4 (HI). Final supplemental Zn concentrations of the 3 dietary treatments were 1) CON—125 ppm; 2) INT—365 ppm; and 3) HI—595 ppm. Sows received dietary treatments from about day 85 of gestation until farrowing. Individual piglet birth weights were recorded within 12 h of parturition. Instances of piglet mortality were recorded daily. The statistical model considered fixed effects of treatment and random effects of parity. Piglets from sows fed the INT diet had heavier (P < 0.05) birth weights than those fed CON (1.42 vs. 1.38 kg, respectively), while offspring from sows fed HI tended to have heavier (P < 0.10) birth weights (1.40 kg) than pigs from INT sows. Furthermore, incidence of low birth weight pigs was less (P < 0.05) for sows consuming INT compared with sows fed CON and HI. Despite differences in birth weight, there were no differences (P > 0.05) in total pigs born, born alive, or weaned, nor differences in individual piglet gain or weaning weight across treatments. Mortality of low birth weight pigs was lowest (P < 0.05) for offspring from sows fed HI (28.1%) compared with offspring from sows fed INT (36.1%) and CON (38.3%). Similarly, overall piglet mortality tended to decrease (P < 0.10) as dietary Zn content increased (CON: 15.0%, INT: 13.2%, and HI: 12.2%). A subset of pigs (n = 420, n = 140/treatment) were selected at weaning to evaluate effects of dietary treatment on postweaning performance. There were no significant effects of sow Zn supplementation on final body weight, days to market, or carcass characteristics of market pigs. Overall, effects of supplemental dietary Zn at 365 and 595 ppm in late gestation improved preweaning survival of low birth weight piglets and reduced overall preweaning mortality of piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.