Background Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPC) promotes recovery of blood flow through the recruitment of pro-angiogenic monocytes. Methods and Results Hindlimb ischemia was produced in mice by iliac artery ligation and MAPC were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPC indicated that cells survived for 1 week. Contrast-enhanced ultrasound on day 3, 7 and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX3CR-1-positive monocytes was significantly higher in MAPC-treated than control groups at day 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or TNF-α-treated cremaster muscle demonstrated that MAPC migrate to peri-microvascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14+ monocytes was 10-fold greater in response to MAPC-conditioned than basal media. Conclusions In limb ischemia, MAPC stimulate the recruitment of pro-angiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond MAPC lifespan suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.
Carotid duplex ultrasound or ultrasonography is an ultrasound-based noninvasive imaging technique to explore anatomic and hemodynamic details of the carotid arteries. B-mode scanning reveals carotid intima-media thickening and carotid plaque; pulsed-wave Doppler imaging, stenosis severity. Clinically, carotid intima-media thickness and plaque levels inform cardiovascular risk stratification and exact assessment of carotid stenosis severity often guides further therapeutic interventions. This review will present the imaging technique and interpretation of carotid duplex ultrasound as a real-world clinicians' guide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.