Switched-mode power supply (SMPS) has been of vital importance majorly in power management of industrial equipment with much-improved efficiency and reliability. Given the diverse range on loading and operating conditions of SMPS, several anomalies can occur in the device resulting to over-voltage, overloading, erratic atmospheric conditions, etc. Electrical over-stress (EOS) is one of the commonly used causes of failure among power electronic devices. Since there is a limitation for the SMPS in terms of input voltage and current (two methods of controlling an SMPS), the device has been subjected to an accelerated aging test using EOS. This study presents a two-fold approach to evaluate the overall state of health of SMPS using an integration of extended Kalman filter (EKF) and deep neural network. Firstly, the EKF algorithm would assist in fusing fault features to acquire an comprehensive degradation trend. Secondly, the degradation pattern of the SMPS has been monitored for four different electrical loadings, and a bi-directional long short-term memory (BiLSTM) deep neural network is trained for future predictions. The proposed model provides a unique approach and accuracy in SMPS fault indication with the aid of electrical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.