These results indicate that reversal of levobupivacaine-induced vasodilation by LE is mediated mainly through the attenuation of levobupivacaine-mediated inhibition of L-type calcium channel-dependent contraction and, in part, by inhibition of levobupivacaine-induced nitric oxide release. LE-mediated reversal of responses induced by local anesthetics may be related to their lipid solubility.
Dexmedetomidine, a full agonist of the α2B-adrenoceptor that is mainly involved in vascular smooth muscle contraction, is primarily used for analgesia and sedation in intensive care units. High-dose dexmedetomidine produces hypertension in children and adults. The goal of this in vitro study was to investigate the role of the calcium (Ca(2+)) sensitization mechanism involving Rho-kinase, protein kinase C (PKC), and phosphoinositide 3-kinase (PI3-K) in mediating contraction of isolated rat aortic smooth muscle in response to dexmedetomidine. The effect of dexmedetomidine on the intracellular Ca(2+) level ([Ca(2+)]i) and tension was measured simultaneously. Dexmedetomidine concentration-response curves were generated in the presence or absence of the following antagonists: rauwolscine, Y 27632, LY 294002, GF 109203X, and verapamil. Dexmedetomidine-induced phosphorylation of PKC and membrane translocation of Rho-kinase were detected with Western blotting. Rauwolscine, Y 27632, GF 109203X, LY 294002, and verapamil attenuated dexmedetomidine-induced contraction. The slope of the [Ca(2+)]i-tension curve for dexmedetomidine was higher than that for KCl. Dexmedetomidine induced phosphorylation of PKC and membrane translocation of Rho-kinase. These results suggest that dexmedetomidine-induced contraction involves a Ca(2+) sensitization mechanism mediated by Rho-kinase, PKC, and PI3-K that is secondary to α2-adrenoceptor stimulation in rat aortic smooth muscle.
PurposeDexmedetomidine, a full agonist of α2B-adrenoceptors, is used for analgesia and sedation in the intensive care units. Dexmedetomidine produces an initial transient hypertension due to the activation of post-junctional α2B-adrenoceptors on vascular smooth muscle cells (SMCs). The aims of this in vitro study were to identify mitogen-activated protein kinase (MAPK) isoforms that are primarily involved in full, α2B-adrenoceptor agonist, dexmedetomidine-induced contraction of isolated rat aortic SMCs.Materials and MethodsRat thoracic aortic rings without endothelium were isolated and suspended for isometric tension recording. Cumulative dexmedetomidine (10-9 to 10-6 M) dose-response curves were generated in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD 98059, p38 MAPK inhibitor SB 203580, c-Jun NH2-terminal kinase (JNK) inhibitor SP 600125, L-type calcium channel blocker (verapamil and nifedipine), and α2-adrenoceptor inhibitor atipamezole. Dexmedetomidine-induced phosphorylation of ERK, JNK, and p38 MAPK in rat aortic SMCs was detected using Western blotting.ResultsSP 600125 (10-6 to 10-5 M) attenuated dexmedetomidine-evoked contraction in a concentration-dependent manner, whereas PD 98059 had no effect on dexmedetomidine-induced contraction. SB 203580 (10-5 M) attenuated dexmedetomidine-induced contraction. Dexmedetomidine-evoked contractions were both abolished by atipamezole and attenuated by verapamil and nifedipine. Dexmedetomidine induced phosphorylation of JNK and p38 MAPK in rat aortic SMCs, but did not induce phosphorylation of ERK.ConclusionDexmedetomidine-induced contraction involves a JNK- and p38 MAPK-mediated pathway downstream of α2-adrenoceptor stimulation in rat aortic SMCs. In addition, dexmedetomidine-induced contractions are primarily dependent on calcium influx via L-type calcium channels.
An endoscopic third ventriculostomy was performed in a 55-year-old man with an obstructive hydrocephalus due to aqueductal stenosis. The vital signs and laboratory studies upon admission were within the normal limits. Anesthesia was maintained with nitrous oxide in oxygen and 6% desflurane. The patient received irrigation with approximately 3,000 ml normal saline during the procedure. Anesthesia and operation were uneventful. However, he developed postoperative hyperventilation in the recovery room, and arterial blood gas analysis revealed acute respiratory alkalosis. We report a rare respiratory alkalosis that occurred after an endoscopic third ventriculostomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.