The aim of this study was to investigate the antioxidant activity of orange (Citrus auranthium) flesh (OF) and peel (OP) extracted with acetone, ethanol, and methanol. Antioxidant potential was examined by measuring total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA), total radical-trapping anti-oxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and cellular antioxidant activity (CAA). The comet assay was used to determine the protective effects of OF and OP against H2O2-induced DNA damage. TPC was highest in the acetone extracts of OF and OP. DPPH RSA was also higher in the acetone extracts than in the ethanol extracts. The DPPH RSA was highest in the acetone extracts of OF. The TRAP and ORAC values of the all extracts increased in a dose-dependent manner. In the TRAP assay, the acetone extracts of OF and OP had the lowest IC50 values. In the CAA assay, the methanol and acetone extracts of OP had the lowest IC50 values. All of the samples protected against H2O2-induced DNA damage in human leukocytes, as measured by the comet assay, but the acetone extracts of OP had the strongest effect. These results suggest that acetone is the best solvent for the extraction of antioxidant compounds from OF and OP. Furthermore, the high antioxidant activity of OP, which is a by-product of orange processing, suggests that it can be used in nutraceutical and functional foods.
This study describes the antioxidant activities and antigenotoxic effects of garlic extracts prepared by different processing methods. Aged-garlic extract (AGE) showed a significantly higher total phenolic content (562.6 +/- 1.92 mg/100 g garlic acid equivalents) than those of raw garlic extract (RGE) or heated garlic extract (HGE). The SC(50) for DPPH RSA in HGE was significantly the highest at 2.1 mg/ml. The SC(50) for SOD-like activity in garlic extracts was, in decreasing order, RGE (7.3 mg/ml) > AGE (8.5 mg/ml) > HGE (9.2 mg /ml). The ED(50) of AGE was the highest (19.3 microg/ml) regarding H2O2 induced DNA damage and its inhibition rate was 70.8%. The ED(50) of RGE for 4-hydroxynonenal (a lipid peroxidation product) induced DNA damage was 38.6 microg/ml, followed by AGE > HGE. Although the heat treatment of garlic tended to decrease the TPC and SOD-like activity and increased DPPH RSA, garlic, in general, has significant antioxidant activity and protective effects against oxidative DNA damage regardless of processing method.
Increased consumption of fresh vegetables that are high in polyphenols has been associated with a reduced risk of oxidative stress-induced disease. The present study aimed to evaluate the antioxidant effects of spinach in vitro and in vivo in hyperlipidemic rats. For measurement of in vitro antioxidant activity, spinach was subjected to hot water extraction (WE) or ethanol extraction (EE) and examined for total polyphenol content (TPC), oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA), and antigenotoxic activity. The in vivo antioxidant activity of spinach was assessed using blood and liver lipid profiles and antioxidant status in rats fed a high fat-cholesterol diet (HFCD) for 6 weeks. The TPC of WE and EE were shown as 1.5±0.0 and 0.5±0.0 mg GAE/g, respectively. Increasing the concentration of the extracts resulted in increased ORAC value, CAA, and antigenotoxic activity for all extracts tested. HFCD-fed rats displayed hyperlipidemia and increased oxidative stress, as indicated by a significant rise in blood and liver lipid profiles, an increase in plasma conjugated diene concentration, an increase in liver thiobarbituric acid reactive substances (TBARS) level, and a significant decrease in manganese superoxide dismutase (Mn-SOD) activity compared with rats fed normal diet. However, administration of 5% spinach showed a beneficial effect in HFCD rats, as indicated by decreased liver TBARS level and DNA damage in leukocyte and increased plasma conjugated dienes and Mn-SOD activity. Thus, the antioxidant activity of spinach may be an effective way to ameliorate high fat and cholesterol diet-induced oxidative stress.
This study investigated the effects of fucoidan (extract from Hizikia fusiforme) on symptoms and inflammatory cytokine activation in rats with monosodium iodoacetate (MIA)-induced osteoarthritis (OA). Forty male SD rats were divided into five groups, including normal, negative control (MIA), positive control (Lyprinol), and two experimental groups treated with 50 or 100 mg/kg fucoidan. Weight-bearing assessments were done after MIA injection into the right knee to induce OA. After 14 days of treatment, microcomputed tomographic (micro-CT) images were made of rat knee joints, and then animals were sacrificed for joint histology and inflammatory cytokine level assessments. MIA injection successfully induced OA by causing 40% weight-bearing imbalance, severe bone loss and cartilage degeneration, and markedly increased cytokine levels. However, fucoidan groups showed over 45% of imbalance and no articular cartilage surface lesions or change in subchondral trabecular bones in Micro-CT images. Histological analysis revealed that cartilage morphology and cell counts were also normal in the 100 mg/kg fucoidan group. In addition, the 100 mg/kg fucoidan groups exhibited lower serum tumor necrosis factor alpha (TNF-α) (30%), interleukin 1 beta (IL-1β) (48%), and matrix metalloproteinase-1 (MMP-1) (65%) compared to the MIA groups. These results suggest that administration of fucoidan prevents the progression of OA in a MIA-induced OA rat model.
Hizikia fusiforme, a brown seaweed, has been utilized as a health food and in traditional medicine. In this study, we investigated whether enzyme-modified H. fusiforme extracts (EH) have immunological effects compared with normal H. fusiforme extracts (NH). The effects of NH and EH on immune responses were investigated by assessing nitric oxide (NO) production, phagocytosis, and cytokine secretion in RAW 264.7 murine macrophages and mice. Also, fucosterol was evaluated to find the active component of NH and EH by addressing cytotoxicity test and NO production. Both of NH and EH significantly increased cell viability and NO synthesis. Tumor necrosis factor-α (TNF-α) expression was more induced by EH with LPS treatment. Phagocytic activity, as the primary function of macrophages, was markedly induced by EH treatment. Additionally, EH encouraged splenocyte proliferation and recovered the levels of cytokines IL-1β, IL-6, and TNF-α in mice. Finally, fucosterol increased NO production with no cytotoxicity, which means that fucosterol is an active component of EH. In conclusion, EH has the potential to modulate immune function and could offer positive therapeutic effect for immune system diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.