Succinic acid (SA) is a valuable raw material obtained by hydrogenation of maleic acid (MA). The product selectivity of this reaction is highly dependent on the reaction conditions. This study therefore investigated the effect of the reaction temperature, hydrogen pressure, and reaction time on the liquid-phase hydrogenation of MA by a Pd/Al2O3 catalyst. Complete conversion of MA and 100% selectivity for SA were achieved at a temperature of 90 °C, H2 pressure of 5 bar, and reaction time of 90 min. Fumaric acid (FA) was formed as an intermediate material by hydrogenation of MA under nonoptimal conditions. The impact of the percentage of Pd dispersion and phase of the Al2O3 support (γ, θ + α, and α) was also examined. The Pd/Al2O3 catalyst with 29.8% dispersion of Pd and γ phase of Al2O3 exhibited the best catalytic performance. Thus, catalytic activity depends not only on the amount of Pd dispersion but also on the physicochemical properties of Al2O3.
Succinic acid (SA) produced from hydrogenation of maleic anhydride (MAN) is used widely in manufacturing of pharmaceuticals, agrochemicals, surfactants and detergent, green solvent and biodegradable plastic. In this study, we performed that liquid hydrogenation of MAN to SA with 5 wt% Pd supported on activated carbon (Pd/C) at low pressure and temperature. The synthesis of SA was performed in aqueous solution while varying temperature, pressure, catalytic amount and agitation speed. We confirmed that the composition of the products consisting of SA, maleic acid (MA), fumaric acid (FA) and malic acid (MLA) depends on the process. The catalytic characteristics were analyzed by TGA, TEM.
Pd/C catalysts were prepared by ion exchange in aqueous solution. Physical dispersion methods including sonication, high share mixer and stirrer were used for though high dispersion of carbon. The physical properties of the prepared Pd/C particles were investigated by BET, XRD, and FE-TEM. The dispersion of Pd nanoparticles on carbon was measured on the basis of CO adsorption capacity using a pulse technique. FE-TEM micrographs showed that Pd nano particles possessed a spherical morphology with a narrow size distribution, with particles sizes ranging from 2-25 nm. The Pd particles prepared using sonication and high share mixer are well dispersed compared to the stirrer method. In addition, metal dispersions as calculated by CO uptake were 11.3, 20.4, and 25.0% for the stirrer, sonication and high share mixer methods, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.