Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
Purpose The Cancer Genome Atlas (TCGA) project recently uncovered four molecular subtypes of gastric cancer: Epstein-Barr virus (EBV), microsatellite instability (MSI), genomically stable (GS), and chromosomal instability (CIN). However, their clinical significances are currently unknown. We aimed to investigate the relationship between subtypes and prognosis of patients with gastric cancer. Experimental Design Gene expression data from a TCGA cohort (n = 262) were used to develop a subtype prediction model, and the association of each subtype with survival and benefit from adjuvant chemotherapy was tested in 2 other cohorts (n = 267 and 432). An integrated risk assessment model (TCGA risk score) was also developed. Results EBV subtype was associated with the best prognosis and GS subtype was associated with the worst prognosis. Patients with MSI and CIN subtypes had poorer overall survival than those with EBV subtype but better overall survival than those with GS subtype (P = 0.004 and 0.03 in two cohorts respectively). In multivariate Cox regression analyses, TCGA risk score was an independent prognostic factor (hazard ratio [HR] = 1.5; 95% confidence interval [CI] = 1.2–1.9; P = 0.001). Patients with the CIN subtype experienced the greatest benefit from adjuvant chemotherapy (HR = 0.39; 95% CI = 0.16–0.94; P = 0.03) and those with the GS subtype had the least benefit from adjuvant chemotherapy (HR = 0.83; 95% CI = 0.36–1.89; P = 0.65). Conclusion Our prediction model successfully stratified patients by survival and adjuvant chemotherapy outcomes. Further development of the prediction model is warranted.
Purpose: Despite continual efforts to develop a prognostic model of gastric cancer by using clinical and pathologic parameters, a clinical test that can discriminate patients with good outcomes from those with poor outcomes after gastric cancer surgery has not been established. We aim to develop practical biomarker-based risk score that can predict relapse of gastric cancer after surgical treatment.Experimental Design: Microarray technologies were used to generate and analyze gene expression profiling data from 65 gastric cancer patients to identify biomarker genes associated with relapse. The association of expression patterns of identified genes with relapse and overall survival was validated in independent gastric cancer patients.Results: We uncovered two subgroups of gastric cancer that were strongly associated with the prognosis. For the easy translation of our findings into practice, we developed a scoring system based on the expression of six genes that predicted the likelihood of relapse after curative resection. In multivariate analysis, the risk score was an independent predictor of relapse in a cohort of 96 patients. We were able to validate the robustness of the six-gene signature in an additional independent cohort.Conclusions: The risk score derived from the six-gene set successfully prognosticated the relapse of gastric cancer patients after gastrectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.