This paper deals with heat exchangers having plate fins of herringbone wave configuration. Correlations are developed to predict the air-side heat transfer coefficient and friction factor as a function of flow conditions and geometric variables of the heat exchanger. Correlations are provided for both staggered and in-line arrays of circular tubes. A multiple regression technique was used to correlate 41 wavy fin geometries by Beecher and Fagan (1987), Wang et al. (1995), and Beecher (1968). For the staggered layout, 92 percent of the heat transfer data are correlated within ±10 percent and 91 percent of the friction data are correlated within ±15 percent.
The objectives of this paper are to measure the heat transfer and pressure drop of the plate heat exchangers for absorption system applications. Three types of plate heat exchangers with different chevron angles are tested in the present experiment. Heat transfer and pressure drop performance of plate heat exchangers are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of high theta (120°) and mixed theta plate heat exchanger increases about 118% and 98% at the solution flow rate 350 kg/h compared to that of low theta (60°), respectively. The effectiveness of high theta was evaluated about 0.53~0.85 in this experimental range. The experimental correlations of the Nu and f were developed with error bands of ±7% and ±12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.