Biogenic amines produced during fermentation may be harmful when ingested in high concentrations. As current regulations remain insufficient to ensure the safety of fermented vegetable products, the current study determined the risks associated with the consumption of kimchi by evaluating the biogenic amine concentrations reported by various studies. Upon evaluation, some kimchi products were found to contain histamine and tyramine at potentially hazardous concentrations exceeding the recommended limit of 100 mg/kg for both histamine and tyramine. The biogenic amines may have originated primarily from metabolic activity by microorganisms during fermentation, as well as from Jeotgal (Korean fermented seafood) and Aekjeot (Korean fermented fish sauce) products commonly used as ingredients for kimchi production. Many studies have suggested that Jeotgal and Aekjeot may contribute to the histamine and tyramine content in kimchi. Microorganisms isolated from kimchi and Jeotgal have been reported to produce both histamine and tyramine. Despite the potential toxicological risks, limited research has been conducted on reducing the biogenic amine content of kimchi and Jeotgal products. The regulation and active monitoring of biogenic amine content during kimchi production appear to be necessary to ensure the safety of the fermented vegetable products.
Spores are resistant against many extreme conditions including the disinfection and sterilization methods used in the food industry. Selective prevention of sporulation of Bacillus species is an ongoing challenge for food scientists and fermentation technologists. This study was conducted to evaluate the effects of single and combined supplementation of calcium and manganese on sporulation of common pathogenic and food spoilage Bacillus species: B. cereus, B. licheniformis, B. subtilis and B. coagulans. Sporulation of Bacillus vegetative cells was induced on sporulation media supplemented with diverse concentrations of the minerals. Under the various mineral supplementation conditions, the degree of sporulation was quantified with colonies formed by the Bacillus spores. The results revealed that B. licheniformis and B. cereus displayed the weakest sporulation capabilities on media with minimal supplementation levels of calcium and manganese. The lowest sporulation of B. subtilis and B. coagulans was observed on media supplemented with the highest level of calcium and low levels of manganese. Depending on effect of supplementation on sporulation, the Bacillus species were divided into two distinct groups: B. licheniformis and B. cereus; and B. subtilis and B. coagulans. The information provides valuable insight to selectively reduce sporulation of Bacillus species undesirable in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.