Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.
Geometrical constraints to the electronic degrees of freedom within condensed-matter systems often give rise to topological quantum states of matter such as fractional quantum Hall states, topological insulators, and Weyl semimetals 1-3 . In magnetism, theoretical studies predict an entangled magnetic quantum state with topological ordering and fractionalized spin excitations, the quantum spin liquid 4 . In particular, the so-called Kitaev spin model 5 , consisting of a network of spins on a honeycomb lattice, is predicted to host Majorana fermions as its excitations. By means of a combination of specific heat measurements and inelastic neutron scattering experiments, we demonstrate the emergence of Majorana fermions in single crystals of α-RuCl 3 , an experimental realization of the Kitaev spin lattice. The specific heat data unveils a two-stage release of magnetic entropy that is characteristic of localized and itinerant Majorana fermions. The neutron scattering results corroborate this picture by revealing quasielastic excitations at low energies around the Brillouin zone centre and an hour-glass-like magnetic continuum at high energies. Our results confirm the presence of Majorana fermions in the Kitaev quantum spin liquid and provide an opportunity to build a unified conceptual framework for investigating fractionalized excitations in condensed matter 1,6-8 .Quantum spin liquids (QSLs) are an unconventional electronic phase of matter characterized by an absence of magnetic longrange order down to zero temperature. They are typically predicted to occur in geometrically frustrated magnets such as triangular, kagome, and pyrochlore lattices 4 , and typically display a macroscopic degeneracy that stabilizes a topologically ordered ground state. The Kitaev QSL state arises as an exact solution of the ideal two-dimensional (2D) honeycomb lattice with bond-directional Ising-type interactions (H = J γ K S γ i S γ j ; γ = x, y, z) on the three dis-
We have identified Nix, a homolog of the E1B 19K/Bcl-2 binding and pro-apoptotic protein Nip3. Human and murine Nix have a 56 and 53% amino acid identity to human and murine Nip3, respectively. The carboxyl terminus of Nix, including a transmembrane domain, is highly homologous to Nip3 but it bears a longer and distinct asparagine/proline-rich N terminus. Human Nip3 maps to chromosome 14q11.2-q12, whereas Nix/BNip3L was found on 8q21. Nix encodes a 23.8-kDa protein but it is expressed as a 48-kDa protein, suggesting that it homodimerizes similarly to Nip3. Following transfection, Nix protein undergoes progressive proteolysis to an 11-kDa C-terminal fragment, which is blocked by the proteasome inhibitor lactacystin. Nix colocalizes with the mitochondrial matrix protein HSP60, and removal of the putative transmembrane domain (TM) results in general cytoplasmic and nuclear expression. When transiently expressed, Nix and Nip3 but not TM deletion mutants rapidly activate apoptosis. Nix can overcome the suppressers Bcl-2 and Bcl-X L , although high levels of Bcl-X L expression will inhibit apoptosis. We propose that Nix and Nip3 form a new subfamily of pro-apoptotic mitochondrial proteins.
Doping of semiconductor nanocrystals by transition-metal ions has attracted tremendous attention owing to their nanoscale spintronic applications. Such doping is, however, difficult to achieve in low-dimensional strongly quantum confined nanostructures by conventional growth procedures. Here we demonstrate that the incorporation of manganese ions up to 10% into CdSe quantum nanoribbons can be readily achieved by a nucleation-controlled doping process. The cation-exchange reaction of (CdSe)(13) clusters with Mn(2+) ions governs the Mn(2+) incorporation during the nucleation stage. This highly efficient Mn(2+) doping of the CdSe quantum nanoribbons results in giant exciton Zeeman splitting with an effective g-factor of approximately 600, the largest value seen so far in diluted magnetic semiconductor nanocrystals. Furthermore, the sign of the s-d exchange is inverted to negative owing to the exceptionally strong quantum confinement in our nanoribbons. The nucleation-controlled doping strategy demonstrated here thus opens the possibility of doping various strongly quantum confined nanocrystals for diverse applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.